реклама

Начало - коридор
Правила за квадратни уравнения. Решаване на непълни квадратни уравнения. Непълни квадратни уравнения

Продължавайки темата „Решаване на уравнения“, материалът в тази статия ще ви запознае с квадратни уравнения.

Нека разгледаме всичко подробно: същността и записа на квадратното уравнение, дефинираме свързаните с него условия, анализираме схемата за решаване на непълни и пълни уравнения, ще се запознаем с формулата за корени и дискриминант, ще установим връзки между корени и коефициенти и разбира се ще дадем нагледно решение на практически примери.

Yandex.RTB R-A-339285-1

Квадратно уравнение, неговите видове

Определение 1

Квадратно уравнениее уравнение, написано като a x 2 + b x + c = 0, Къде х– променлива, a , b и c– някои числа, докато ане е нула.

често квадратни уравнениясе наричат ​​още уравнения от втора степен, тъй като по същество квадратното уравнение е алгебрично уравнение от втора степен.

Нека дадем пример за илюстрация дадено определение: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 и т.н. Това са квадратни уравнения.

Определение 2

Числата a, b и cса коефициентите на квадратното уравнение a x 2 + b x + c = 0, докато коеф асе нарича първи, или старши, или коефициент при x 2, b - вторият коефициент, или коефициент при х, А cнаречен безплатен член.

Например в квадратното уравнение 6 x 2 − 2 x − 11 = 0водещият коефициент е 6, вторият коефициент е − 2 , а свободният член е равен на − 11 . Нека обърнем внимание на факта, че когато коефициентите bи/или c са отрицателни, тогава използвайте кратка формазаписи като 6 x 2 − 2 x − 11 = 0, не 6 x 2 + (− 2) x + (− 11) = 0.

Нека изясним и този аспект: ако коефициентите аи/или bравен 1 или − 1 , то те могат да не вземат изрично участие в записването на квадратното уравнение, което се обяснява с особеностите на записване на посочените числови коефициенти. Например в квадратното уравнение y 2 − y + 7 = 0водещият коефициент е 1, а вторият коефициент е − 1 .

Редуцирани и нередуцирани квадратни уравнения

Въз основа на стойността на първия коефициент квадратните уравнения се разделят на редуцирани и нередуцирани.

Определение 3

Редуцирано квадратно уравнениее квадратно уравнение, където водещият коефициент е 1. За други стойности на водещия коефициент квадратното уравнение е нередуцирано.

Да дадем примери: приведени са квадратни уравнения x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0, във всяко от които водещият коефициент е 1.

9 x 2 − x − 2 = 0- нередуцирано квадратно уравнение, където първият коефициент е различен от 1 .

Всяко нередуцирано квадратно уравнение може да бъде преобразувано в редуцирано уравнение чрез разделяне на двете страни на първия коефициент (еквивалентна трансформация). Трансформираното уравнение ще има същите корени като даденото нередуцирано уравнение или също няма да има никакви корени.

Разглеждането на конкретен пример ще ни позволи ясно да демонстрираме прехода от нередуцирано квадратно уравнение към редуцирано.

Пример 1

Дадено е уравнението 6 x 2 + 18 x − 7 = 0 . Необходимо е оригиналното уравнение да се преобразува в намалена форма.

Решение

Съгласно горната схема, ние разделяме двете страни на оригиналното уравнение на водещия коефициент 6. Тогава получаваме: (6 x 2 + 18 x − 7) : 3 = 0: 3, и това е същото като: (6 x 2) : 3 + (18 x) : 3 − 7: 3 = 0и по-нататък: (6: 6) x 2 + (18: 6) x − 7: 6 = 0.От тук: x 2 + 3 x - 1 1 6 = 0 . Така се получава уравнение, еквивалентно на даденото.

отговор: x 2 + 3 x - 1 1 6 = 0 .

Пълни и непълни квадратни уравнения

Нека се обърнем към дефиницията на квадратно уравнение. В него уточнихме, че a ≠ 0. Подобно условие е необходимо за уравнението a x 2 + b x + c = 0беше точно квадрат, тъй като при а = 0по същество се трансформира в линейно уравнение b x + c = 0.

В случай, че коеф bИ cса равни на нула (което е възможно, както поотделно, така и заедно), квадратното уравнение се нарича непълно.

Определение 4

Непълно квадратно уравнение- такова квадратно уравнение a x 2 + b x + c = 0,където поне един от коефициентите bИ c(или и двете) е нула.

Пълно квадратно уравнение– квадратно уравнение, в което всички числени коефициенти не са равни на нула.

Нека обсъдим защо видовете квадратни уравнения са дадени точно с тези имена.

Когато b = 0, квадратното уравнение приема формата a x 2 + 0 x + c = 0, което е същото като a x 2 + c = 0. При c = 0квадратно уравнение, записано като a x 2 + b x + 0 = 0, което е еквивалентно a x 2 + b x = 0. При b = 0И c = 0уравнението ще приеме формата a x 2 = 0. Уравненията, които получихме, се различават от пълното квадратно уравнение по това, че техните леви части не съдържат нито член с променливата x, нито свободен член, нито и двете. Всъщност този факт даде името на този тип уравнения – непълни.

Например, x 2 + 3 x + 4 = 0 и − 7 x 2 − 2 x + 1, 3 = 0 са пълни квадратни уравнения; x 2 = 0, − 5 x 2 = 0; 11 x 2 + 2 = 0, − x 2 − 6 x = 0 – непълни квадратни уравнения.

Решаване на непълни квадратни уравнения

Дефиницията, дадена по-горе, позволява да се разграничат следните видове непълни квадратни уравнения:

  • a x 2 = 0, това уравнение съответства на коефициентите b = 0и с = 0;
  • a · x 2 + c = 0 при b = 0;
  • a · x 2 + b · x = 0 при c = 0.

Нека разгледаме последователно решението на всеки тип непълно квадратно уравнение.

Решение на уравнението a x 2 =0

Както бе споменато по-горе, това уравнение съответства на коефициентите bИ c, равно на нула. Уравнение a x 2 = 0може да се преобразува в еквивалентно уравнение х 2 = 0, което получаваме, като разделим двете страни на първоначалното уравнение на числото а, не е равно на нула. Очевидният факт е, че коренът на уравнението х 2 = 0това е нула, защото 0 2 = 0 . Това уравнение няма други корени, което може да се обясни със свойствата на степента: за всяко число п,не е равно на нула, неравенството е вярно p 2 > 0, от което следва, че когато p ≠ 0равенство p 2 = 0никога няма да бъде постигнато.

Определение 5

Така за непълното квадратно уравнение a x 2 = 0 има един корен х = 0.

Пример 2

Например, нека решим непълно квадратно уравнение − 3 x 2 = 0. То е еквивалентно на уравнението х 2 = 0, единственият му корен е х = 0, тогава първоначалното уравнение има един корен - нула.

Накратко решението е написано по следния начин:

− 3 x 2 = 0, x 2 = 0, x = 0.

Решаване на уравнението a x 2 + c = 0

Следващото по ред е решението на непълни квадратни уравнения, където b = 0, c ≠ 0, тоест уравнения от вида a x 2 + c = 0. Нека трансформираме това уравнение, като преместим член от едната страна на уравнението в другата, променим знака на противоположния и разделим двете страни на уравнението на число, което не е равно на нула:

  • трансфер cв дясната страна, което дава уравнението a x 2 = − c;
  • разделете двете страни на уравнението на а, завършваме с x = - c a .

Нашите трансформации са еквивалентни; съответно полученото уравнение също е еквивалентно на оригиналното и този факт позволява да се направят изводи за корените на уравнението. От това какви са стойностите аИ cстойността на израза - c a зависи: може да има знак минус (например, ако а = 1И c = 2, след това - c a = - 2 1 = - 2) или знак плюс (например, ако a = − 2И c = 6, тогава - c a = - 6 - 2 = 3); не е нула, защото c ≠ 0. Нека се спрем по-подробно на ситуации, когато - c a< 0 и - c a > 0 .

В случай, когато - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа стрравенството p 2 = - c a не може да бъде вярно.

Всичко е различно, когато - c a > 0: запомнете квадратния корен и ще стане очевидно, че коренът на уравнението x 2 = - c a ще бъде числото - c a, тъй като - c a 2 = - c a. Не е трудно да се разбере, че числото - - c a също е коренът на уравнението x 2 = - c a: наистина, - - c a 2 = - c a.

Уравнението няма да има други корени. Можем да демонстрираме това с помощта на метода на противоречието. Като начало, нека дефинираме обозначенията за корените, намерени по-горе, като х 1И − x 1. Да приемем, че уравнението x 2 = - c a също има корен х 2, което е различно от корените х 1И − x 1. Знаем това чрез заместване в уравнението хнеговите корени, трансформираме уравнението в справедливо числово равенство.

За х 1И − x 1записваме: x 1 2 = - c a , и за х 2- x 2 2 = - c a . Въз основа на свойствата на числовите равенства, ние изваждаме един правилен член по член от друг, което ще ни даде: x 1 2 − x 2 2 = 0. Използваме свойствата на операциите с числа, за да пренапишем последното равенство като (x 1 − x 2) · (x 1 + x 2) = 0. Известно е, че произведението на две числа е нула тогава и само ако поне едно от числата е нула. От горното следва, че x 1 − x 2 = 0и/или x 1 + x 2 = 0, което е същото x 2 = x 1и/или x 2 = − x 1. Възникна очевидно противоречие, тъй като първоначално беше договорено, че коренът на уравнението х 2различен от х 1И − x 1. И така, доказахме, че уравнението няма други корени освен x = - c a и x = - - c a.

Нека обобщим всички аргументи по-горе.

Определение 6

Непълно квадратно уравнение a x 2 + c = 0е еквивалентно на уравнението x 2 = - c a, което:

  • няма да има корени в - c a< 0 ;
  • ще има два корена x = - c a и x = - - c a за - c a > 0.

Нека дадем примери за решаване на уравненията a x 2 + c = 0.

Пример 3

Дадено е квадратно уравнение 9 х 2 + 7 = 0.Необходимо е да се намери решение.

Решение

Нека преместим свободния член в дясната страна на уравнението, тогава уравнението ще приеме формата 9 x 2 = − 7.
Нека разделим двете страни на полученото уравнение на 9 , стигаме до x 2 = - 7 9 . От дясната страна виждаме число със знак минус, което означава: даденото уравнение няма корени. Тогава първоначалното непълно квадратно уравнение 9 х 2 + 7 = 0няма да има корени.

отговор:уравнение 9 х 2 + 7 = 0няма корени.

Пример 4

Уравнението трябва да се реши − x 2 + 36 = 0.

Решение

Нека преместим 36 надясно: − x 2 = − 36.
Нека разделим двете части на − 1 , получаваме х 2 = 36. От дясната страна - положително число, от тук можем да заключим, че x = 36 или x = - 36 .
Нека извлечем корена и запишем крайния резултат: непълно квадратно уравнение − x 2 + 36 = 0има два корена х=6или x = − 6.

отговор: х=6или x = − 6.

Решение на уравнението a x 2 +b x=0

Нека анализираме третия тип непълни квадратни уравнения, когато c = 0. Да се ​​намери решение на непълно квадратно уравнение a x 2 + b x = 0, ще използваме метода на факторизиране. Нека факторизираме полинома, който е от лявата страна на уравнението, като извадим общия множител от скоби х. Тази стъпка ще направи възможно трансформирането на оригиналното непълно квадратно уравнение в негов еквивалент x (a x + b) = 0. И това уравнение от своя страна е еквивалентно на набор от уравнения х = 0И a x + b = 0. Уравнение a x + b = 0линеен и неговия корен: x = − b a.

Определение 7

По този начин непълното квадратно уравнение a x 2 + b x = 0ще има два корена х = 0И x = − b a.

Нека затвърдим материала с пример.

Пример 5

Необходимо е да се намери решение на уравнението 2 3 · x 2 - 2 2 7 · x = 0.

Решение

Ще го извадим хизвън скобите получаваме уравнението x · 2 3 · x - 2 2 7 = 0 . Това уравнение е еквивалентно на уравненията х = 0и 2 3 x - 2 2 7 = 0. Сега трябва да решите полученото линейно уравнение: 2 3 · x = 2 2 7, x = 2 2 7 2 3.

Запишете накратко решението на уравнението, както следва:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 или 2 3 x - 2 2 7 = 0

x = 0 или x = 3 3 7

отговор: x = 0, x = 3 3 7.

Дискриминант, формула за корените на квадратно уравнение

За намиране на решения на квадратни уравнения има коренна формула:

Определение 8

x = - b ± D 2 · a, където D = b 2 − 4 a c– така нареченият дискриминант на квадратно уравнение.

Записването на x = - b ± D 2 · a по същество означава, че x 1 = - b + D 2 · a, x 2 = - b - D 2 · a.

Би било полезно да разберете как е получена тази формула и как да я приложите.

Извеждане на формулата за корените на квадратно уравнение

Нека се сблъскаме със задачата да решим квадратно уравнение a x 2 + b x + c = 0. Нека извършим няколко еквивалентни трансформации:

  • разделете двете страни на уравнението на число а, различни от нула, получаваме следното квадратно уравнение: x 2 + b a · x + c a = 0 ;
  • Нека изберем пълния квадрат от лявата страна на полученото уравнение:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + в а
    След това уравнението ще приеме формата: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • Сега е възможно да прехвърлим последните два термина от дясната страна, променяйки знака на противоположния, след което получаваме: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • Накрая трансформираме израза, записан от дясната страна на последното равенство:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Така стигаме до уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , еквивалентно на първоначалното уравнение a x 2 + b x + c = 0.

Разгледахме решението на такива уравнения в предишните параграфи (решаване на непълни квадратни уравнения). Вече натрупаният опит позволява да се направи заключение относно корените на уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • с b 2 - 4 a c 4 a 2< 0 уравнение не имеет действительных решений;
  • когато b 2 - 4 · a · c 4 · a 2 = 0, уравнението е x + b 2 · a 2 = 0, тогава x + b 2 · a = 0.

От тук единственият корен x = - b 2 · a е очевиден;

  • за b 2 - 4 · a · c 4 · a 2 > 0 ще бъде вярно следното: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 или x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , което е същото като x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 или x = - b 2 · a - b 2 - 4 · a · c 4 · a 2 , т.е. уравнението има два корена.

Възможно е да се заключи, че наличието или отсъствието на корени на уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (и следователно първоначалното уравнение) зависи от знака на израза b 2 - 4 · a · c 4 · a 2, написани от дясната страна. И знакът на този израз се дава от знака на числителя (знаменател 4 а 2винаги ще бъде положителен), тоест знакът на израза b 2 − 4 a c. Този израз b 2 − 4 a cдадено е името - дискриминантът на квадратното уравнение и буквата D е определена като негово обозначение. Тук можете да запишете същността на дискриминанта - по стойността и знака му могат да направят извод дали квадратното уравнение ще има реални корени и ако да, какъв е броят на корените - един или два.

Нека се върнем към уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Нека го пренапишем с помощта на дискриминантна нотация: x + b 2 · a 2 = D 4 · a 2 .

Нека отново формулираме изводите си:

Определение 9

  • при г< 0 уравнението няма реални корени;
  • при D=0уравнението има един корен x = - b 2 · a ;
  • при D > 0уравнението има два корена: x = - b 2 · a + D 4 · a 2 или x = - b 2 · a - D 4 · a 2. Въз основа на свойствата на радикалите тези корени могат да бъдат записани във формата: x = - b 2 · a + D 2 · a или - b 2 · a - D 2 · a. И когато отворим модулите и приведем дробите към общ знаменател, получаваме: x = - b + D 2 · a, x = - b - D 2 · a.

И така, резултатът от нашите разсъждения беше извеждането на формулата за корените на квадратно уравнение:

x = - b + D 2 a, x = - b - D 2 a, дискриминант гизчислено по формулата D = b 2 − 4 a c.

Тези формули позволяват да се определят и двата реални корена, когато дискриминантът е по-голям от нула. Когато дискриминантът е нула, прилагането на двете формули ще даде същия корен, като единственото решениеквадратно уравнение. В случай, че дискриминантът е отрицателен, ако се опитаме да използваме формулата за корен на квадратно уравнение, ще се сблъскаме с необходимостта да извлечем корен квадратенот отрицателно число, което ще ни отведе отвъд реалните числа. С отрицателен дискриминант квадратното уравнение няма да има реални корени, но е възможна двойка комплексно спрегнати корени, определени от същите формули за корени, които получихме.

Алгоритъм за решаване на квадратни уравнения с помощта на коренни формули

Възможно е да се реши квадратно уравнение чрез незабавно използване на формулата за корен, но това обикновено се прави, когато е необходимо да се намерят сложни корени.

В повечето случаи това обикновено означава търсене не на комплексни, а на реални корени на квадратно уравнение. Тогава е оптимално, преди да използвате формулите за корените на квадратно уравнение, първо да определите дискриминанта и да се уверите, че той не е отрицателен (в противен случай ще заключим, че уравнението няма реални корени) и след това да преминете към изчисляване на стойност на корените.

Разсъждението по-горе дава възможност да се формулира алгоритъм за решаване на квадратно уравнение.

Определение 10

За решаване на квадратно уравнение a x 2 + b x + c = 0, необходимо:

  • според формулата D = b 2 − 4 a cнамиране на дискриминантната стойност;
  • при Д< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • за D = 0, намерете единствения корен на уравнението по формулата x = - b 2 · a;
  • за D > 0, определете два реални корена на квадратното уравнение, като използвате формулата x = - b ± D 2 · a.

Имайте предвид, че когато дискриминантът е нула, можете да използвате формулата x = - b ± D 2 · a, тя ще даде същия резултат като формулата x = - b 2 · a.

Нека да разгледаме примерите.

Примери за решаване на квадратни уравнения

Нека дадем решение на примерите за различни значениядискриминант.

Пример 6

Трябва да намерим корените на уравнението x 2 + 2 x − 6 = 0.

Решение

Нека запишем числените коефициенти на квадратното уравнение: a = 1, b = 2 и c = − 6. След това продължаваме според алгоритъма, т.е. Нека започнем да изчисляваме дискриминанта, за който ще заместим коефициентите a, b И cвъв формулата на дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Така че получаваме D > 0, което означава, че оригиналното уравнение ще има два реални корена.
За да ги намерим, използваме коренната формула x = - b ± D 2 · a и, замествайки съответните стойности, получаваме: x = - 2 ± 28 2 · 1. Нека опростим получения израз, като извадим фактора от знака за корен и след това намалим дробта:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 или x = - 2 - 2 7 2

x = - 1 + 7 или x = - 1 - 7

отговор: x = - 1 + 7 ​​​​​​, x = - 1 - 7 .

Пример 7

Трябва да се реши квадратно уравнение − 4 x 2 + 28 x − 49 = 0.

Решение

Нека дефинираме дискриминанта: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. При тази стойност на дискриминанта оригиналното уравнение ще има само един корен, определен по формулата x = - b 2 · a.

x = - 28 2 (- 4) x = 3,5

отговор: х = 3,5.

Пример 8

Уравнението трябва да се реши 5 y 2 + 6 y + 2 = 0

Решение

Числените коефициенти на това уравнение ще бъдат: a = 5, b = 6 и c = 2. Използваме тези стойности, за да намерим дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Изчисленият дискриминант е отрицателен, така че оригиналното квадратно уравнение няма реални корени.

В случай, че задачата е да посочим сложни корени, прилагаме формулата на корена, извършвайки действия с сложни числа:

x = - 6 ± - 4 2 5,

x = - 6 + 2 i 10 или x = - 6 - 2 i 10,

x = - 3 5 + 1 5 · i или x = - 3 5 - 1 5 · i.

отговор:няма реални корени; сложните корени са както следва: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

IN училищна програмаНяма стандартно изискване за търсене на сложни корени, следователно, ако по време на решението дискриминантът е определен като отрицателен, веднага се записва отговорът, че няма реални корени.

Коренна формула за четни втори коефициенти

Коренната формула x = - b ± D 2 · a (D = b 2 − 4 · a · c) дава възможност да се получи друга формула, по-компактна, позволяваща да се намерят решения на квадратни уравнения с четен коефициент за x ( или с коефициент от формата 2 · n, например 2 3 или 14 ln 5 = 2 7 ln 5). Нека покажем как се получава тази формула.

Нека се изправим пред задачата да намерим решение на квадратното уравнение a · x 2 + 2 · n · x + c = 0 . Продължаваме според алгоритъма: определяме дискриминанта D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c) и след това използваме коренната формула:

x = - 2 n ± D 2 a, x = - 2 n ± 4 n 2 - a c 2 a, x = - 2 n ± 2 n 2 - a c 2 a, x = - n ± n 2 - a · c a .

Нека изразът n 2 − a · c бъде означен като D 1 (понякога се обозначава с D "). Тогава формулата за корените на разглежданото квадратно уравнение с втория коефициент 2 · n ще приеме формата:

x = - n ± D 1 a, където D 1 = n 2 − a · c.

Лесно се вижда, че D = 4 · D 1, или D 1 = D 4. С други думи, D 1 е една четвърт от дискриминанта. Очевидно знакът на D 1 е същият като знака на D, което означава, че знакът на D 1 може също да служи като индикатор за наличието или отсъствието на корени на квадратно уравнение.

Определение 11

По този начин, за да се намери решение на квадратно уравнение с втори коефициент от 2 n, е необходимо:

  • намерете D 1 = n 2 − a · c ;
  • в D 1< 0 сделать вывод, что действительных корней нет;
  • когато D 1 = 0, определете единствения корен на уравнението, като използвате формулата x = - n a;
  • за D 1 > 0, определете два реални корена, като използвате формулата x = - n ± D 1 a.

Пример 9

Необходимо е да се реши квадратното уравнение 5 x 2 − 6 x − 32 = 0.

Решение

Можем да представим втория коефициент на даденото уравнение като 2 · (− 3) . След това пренаписваме даденото квадратно уравнение като 5 x 2 + 2 (− 3) x − 32 = 0, където a = 5, n = − 3 и c = − 32.

Нека изчислим четвъртата част от дискриминанта: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169. Получената стойност е положителна, което означава, че уравнението има два реални корена. Нека ги определим с помощта на съответната коренна формула:

x = - n ± D 1 a, x = - - 3 ± 169 5, x = 3 ± 13 5,

x = 3 + 13 5 или x = 3 - 13 5

x = 3 1 5 или x = - 2

Би било възможно да се извършат изчисления, като се използва обичайната формула за корените на квадратно уравнение, но в този случай решението би било по-тромаво.

отговор: x = 3 1 5 или x = - 2 .

Опростяване на формата на квадратни уравнения

Понякога е възможно да се оптимизира формата на оригиналното уравнение, което ще опрости процеса на изчисляване на корените.

Например, квадратното уравнение 12 x 2 − 4 x − 7 = 0 очевидно е по-удобно за решаване от 1200 x 2 − 400 x − 700 = 0.

По-често опростяването на формата на квадратно уравнение се извършва чрез умножаване или разделяне на двете му страни на определено число. Например, по-горе показахме опростено представяне на уравнението 1200 x 2 − 400 x − 700 = 0, получено чрез разделяне на двете страни на 100.

Такова преобразуване е възможно, когато коефициентите на квадратното уравнение не са взаимно прости числа. Тогава обикновено разделяме двете страни на уравнението на най-голямата общ делител абсолютни стойностинеговите коефициенти.

Като пример използваме квадратното уравнение 12 x 2 − 42 x + 48 = 0. Нека определим GCD на абсолютните стойности на неговите коефициенти: GCD (12, 42, 48) = GCD (GCD (12, 42), 48) = GCD (6, 48) = 6. Нека разделим двете страни на първоначалното квадратно уравнение на 6 и да получим еквивалентното квадратно уравнение 2 x 2 − 7 x + 8 = 0.

Като умножите двете страни на квадратно уравнение, обикновено се отървавате от дробните коефициенти. В този случай те се умножават по най-малкото общо кратно на знаменателите на неговите коефициенти. Например, ако всяка част от квадратното уравнение 1 6 x 2 + 2 3 x - 3 = 0 се умножи с LCM (6, 3, 1) = 6, тогава то ще бъде написано в повече в проста форма x 2 + 4 x − 18 = 0 .

Накрая отбелязваме, че почти винаги се отърваваме от минуса при първия коефициент на квадратно уравнение, като променяме знаците на всеки член на уравнението, което се постига чрез умножаване (или деление) на двете страни по −1. Например от квадратното уравнение − 2 x 2 − 3 x + 7 = 0 можете да отидете до неговата опростена версия 2 x 2 + 3 x − 7 = 0.

Връзка между корени и коефициенти

Формулата за корените на квадратните уравнения, която вече ни е известна, x = - b ± D 2 · a, изразява корените на уравнението чрез неговите числени коефициенти. Въз основа на тази формула имаме възможност да зададем други зависимости между корените и коефициентите.

Най-известните и приложими са формулите на теоремата на Виета:

x 1 + x 2 = - b a и x 2 = c a.

По-специално, за даденото квадратно уравнение сумата от корените е вторият коефициент с противоположен знак, а произведението на корените е равно на свободния член. Например, като разгледаме формата на квадратното уравнение 3 x 2 − 7 x + 22 = 0, е възможно незабавно да определим, че сумата от неговите корени е 7 3, а произведението от корените е 22 3.

Можете също така да намерите редица други връзки между корените и коефициентите на квадратно уравнение. Например сумата от квадратите на корените на квадратно уравнение може да бъде изразена чрез коефициенти:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b a 2 - 2 c a = b 2 a 2 - 2 c a = b 2 - 2 a c a 2.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter

Непълното квадратно уравнение се различава от класическите (пълни) уравнения по това, че неговите фактори или свободен член са равни на нула. Графиките на такива функции са параболи. В зависимост от общия им вид се делят на 3 групи. Принципите на решаване на всички видове уравнения са еднакви.

Няма нищо сложно в определянето на вида на непълен полином. Най-добре е да разгледате основните разлики, като използвате визуални примери:

  1. Ако b = 0, тогава уравнението е ax 2 + c = 0.
  2. Ако c = 0, тогава трябва да се реши изразът ax 2 + bx = 0.
  3. Ако b = 0 и c = 0, тогава полиномът се превръща в равенство като ax 2 = 0.

Последният случай е по-скоро теоретична възможност и никога не се среща в задачите за проверка на знанията, тъй като единствената правилна стойност на променливата x в израза е нула. В бъдеще ще бъдат разгледани методи и примери за решаване на непълни квадратни уравнения от тип 1) и 2).

Общ алгоритъм за търсене на променливи и примери с решения

Независимо от вида на уравнението, алгоритъмът за решение се свежда до следните стъпки:

  1. Намалете израза до форма, удобна за намиране на корени.
  2. Извършете изчисления.
  3. Запишете отговора.

Най-лесният начин за решаване на непълни уравнения е чрез факторизиране лявата странаи оставяйки нула отдясно. Така формулата за непълно квадратно уравнение за намиране на корени се свежда до изчисляване на стойността на x за всеки от факторите.

Можете само да научите как да го решите на практика, така че нека помислим конкретен примернамиране на корените на непълно уравнение:

Както се вижда, в в този случай b = 0. Нека разложим лявата страна на множители и ще получим израза:

4(x – 0,5) ⋅ (x + 0,5) = 0.

Очевидно произведението е равно на нула, когато поне един от факторите е равен на нула. Стойностите на променливата x1 = 0,5 и (или) x2 = -0,5 отговарят на подобни изисквания.

За да се справите лесно и бързо със задачата за разлагане квадратен тричленна фактори, запомнете следната формула:

Ако в израза няма свободен член, проблемът е значително опростен. Ще бъде достатъчно само да намерите и скобите общ знаменател. За по-голяма яснота разгледайте пример за това как се решават непълни квадратни уравнения от формата ax2 + bx = 0.

Нека извадим променливата x извън скобите и ще получим следния израз:

x ⋅ (x + 3) = 0.

Водени от логиката стигаме до извода, че x1 = 0, а x2 = -3.

Традиционен метод на решение и непълни квадратни уравнения

Какво се случва, ако приложите дискриминантната формула и се опитате да намерите корените на полином с коефициенти, равни на нула? Да вземем пример от сборника типични задачиза Единния държавен изпит по математика 2017 г. ще го решим по стандартни формули и метода на факторизиране.

7x 2 – 3x = 0.

Нека изчислим дискриминантната стойност: D = (-3)2 – 4 ⋅ (-7) ⋅ 0 = 9. Оказва се, че полиномът има два корена:

Сега нека решим уравнението чрез разлагане на множители и сравним резултатите.

X ⋅ (7x + 3) = 0,

2) 7x + 3 = 0,
7x = -3,
х = -.

Както можете да видите, и двата метода дават един и същ резултат, но решаването на уравнението чрез втория метод беше много по-лесно и по-бързо.

Теорема на Виета

Но какво да правим с любимата теорема на Виета? Може ли този метод да се използва, когато триномът е непълен? Нека се опитаме да разберем аспектите на привеждането на непълни уравнения до класически вид ax2 + bx + c = 0.

Всъщност в този случай е възможно да се приложи теоремата на Виета. Необходимо е само изразът да се приведе в общия му вид, като се заменят липсващите членове с нула.

Например при b = 0 и a = 1, за да се елиминира възможността от объркване, задачата трябва да се напише във вида: ax2 + 0 + c = 0. Тогава отношението на сбора и произведението на корените и факторите на полинома могат да бъдат изразени по следния начин:

Теоретичните изчисления помагат да се запознаете със същността на проблема и винаги изискват практически умения при решаването специфични задачи. Нека се обърнем отново към справочника със стандартни задачи за Единния държавен изпит и да намерим подходящ пример:

Нека запишем израза във вид, удобен за прилагане на теоремата на Виета:

x 2 + 0 – 16 = 0.

Следващата стъпка е да създадете система от условия:

Очевидно корените на квадратния полином ще бъдат x 1 = 4 и x 2 = -4.

Сега нека се упражним да приведем уравнението в общия му вид. Да вземем следния пример: 1/4× x 2 – 1 = 0

За да се приложи теоремата на Виета към израз, е необходимо да се отървем от дробта. Нека умножим лявата и дясната страна по 4 и погледнем резултата: x2– 4 = 0. Полученото равенство е готово за решаване чрез теоремата на Виета, но е много по-лесно и по-бързо да получите отговора, като просто преместите c = 4 в дясната страна на уравнението: x2 = 4.

За да обобщим, трябва да се каже, че най-добрият начинрешаването на непълни уравнения е факторизация, е най-простият и бърз метод. Ако възникнат трудности в процеса на търсене на корени, можете да се свържете традиционен методнамиране на корени чрез дискриминант.

Да работим с квадратни уравнения. Това са много популярни уравнения! В самата общ изгледквадратното уравнение изглежда така:

Например:

тук А =1; b = 3; c = -4

тук А =2; b = -0,5; c = 2,2

тук А =-3; b = 6; c = -18

Е, разбирате...

Как се решават квадратни уравнения?Ако имате квадратно уравнение пред вас в тази форма, тогава всичко е просто. Да си припомним вълшебна дума дискриминант . Рядко гимназист не е чувал тази дума! Фразата „ние решаваме чрез дискриминант“ вдъхва увереност и увереност. Защото няма нужда да очаквате трикове от дискриминанта! Използва се лесно и безпроблемно. И така, формулата за намиране на корените на квадратно уравнение изглежда така:

Изразът под знака на корена е единицата дискриминант. Както можете да видите, за да намерим X, използваме само a, b и c. Тези. коефициенти от квадратно уравнение. Просто внимателно заменете стойностите a, b и cТова е формулата, която изчисляваме. Да заместим със собствените си знаци! Например за първото уравнение А =1; b = 3; c= -4. Тук го записваме:

Примерът е почти решен:

Това е.

Какви случаи са възможни при използване на тази формула? Има само три случая.

1. Дискриминантът е положителен. Това означава, че коренът може да бъде извлечен от него. Друг е въпросът дали коренът се извлича добре или зле. Важно е какво се извлича по принцип. Тогава вашето квадратно уравнение има два корена. Две различни решения.

2. Дискриминантът е нула. Тогава имате едно решение. Строго погледнато, това не е един корен, а две еднакви. Но това играе роля при неравенствата, където ще проучим въпроса по-подробно.

3. Дискриминантът е отрицателен. Не може да се извади корен квадратен от отрицателно число. О, добре. Това означава, че няма решения.

Много е просто. И какво, мислите, че е невъзможно да направите грешка? Ами да, как...
Най-честите грешки са объркване със стойностите на знаците a, b и c. Или по-скоро не с техните знаци (къде да се объркате?), А със заместването на отрицателни стойности във формулата за изчисляване на корените. Това, което помага тук, е подробен запис на формулата с конкретни числа. Ако има проблеми с изчисленията, направи това!



Да предположим, че трябва да решим следния пример:

тук а = -6; b = -5; c = -1

Да приемем, че знаете, че рядко получавате отговори от първия път.

Е, не бъдете мързеливи. Ще отнеме около 30 секунди, за да напишете допълнителен ред и броя на грешките рязко ще намалее. Така че ние пишем подробно, с всички скоби и знаци:

Изглежда невероятно трудно да се пише толкова внимателно. Но така само изглежда. Опитайте го. Е, или изберете. Кое е по-добро, бързо или правилно? Освен това ще те направя щастлив. След известно време няма да има нужда да записвате всичко толкова внимателно. Ще се получи от само себе си. Особено ако използвате практически техники, които са описани по-долу. Този зъл пример с куп минуси се решава лесно и без грешки!

така че как се решават квадратни уравнениячрез дискриминанта, който запомнихме. Или са се научили, което също е добре. Знаете как да определите правилно a, b и c. знаеш ли как внимателнозаменете ги в коренната формула и внимателнопребройте резултата. Разбирате, че ключовата дума тук е внимателно?

Квадратните уравнения обаче често изглеждат малко по-различно. Например така:

това непълни квадратни уравнения . Те могат да бъдат решени и чрез дискриминант. Просто трябва да разберете правилно на какво са равни тук. a, b и c.

Разбрахте ли го? В първия пример а = 1; b = -4;А c? Изобщо го няма! Ами да, точно така. В математиката това означава, че c = 0 ! Това е. Вместо това заменете нула във формулата в,и ще успеем. Същото и с втория пример. Само ние нямаме нула тук с, А b !

Но непълните квадратни уравнения могат да бъдат решени много по-лесно. Без никаква дискриминация. Нека разгледаме първото непълно уравнение. Какво можете да направите от лявата страна? Можете да извадите X от скоби! Да го извадим.

И какво от това? И фактът, че продуктът е равен на нула тогава и само ако някой от факторите е равен на нула! не ми вярваш Добре, тогава измислете две ненулеви числа, които, когато се умножат, ще дадат нула!
не работи? това е...
Следователно можем уверено да напишем: х = 0, или х = 4

Всички. Това ще бъдат корените на нашето уравнение. И двете са подходящи. Когато заместваме някое от тях в оригиналното уравнение, получаваме правилната идентичност 0 = 0. Както можете да видите, решението е много по-просто от използването на дискриминант.

Второто уравнение също може да бъде решено просто. Преместете 9 надясно. Получаваме:

Всичко, което остава, е да извлечем корена от 9 и това е. Ще се окаже:

Също така два корена . x = +3 и x = -3.

Ето как се решават всички непълни квадратни уравнения. Или като поставите X извън скоби, или просто прехвърлянечисла вдясно и след това извличане на корена.
Изключително трудно е да се объркат тези техники. Просто защото в първия случай ще трябва да извлечете корена на X, което е някак неразбираемо, а във втория случай няма какво да извадите от скоби...

Сега вземете под внимание практическите техники, които значително намаляват броя на грешките. Същите, които са от невнимание... За които после става болезнено и обидно...

Първа среща. Не бъдете мързеливи, преди да решите квадратно уравнение и да го приведете в стандартна форма. какво значи това
Да кажем, че след всички трансформации получавате следното уравнение:

Не бързайте да пишете коренната формула! Почти сигурно ще объркате шансовете a, b и c.Конструирайте примера правилно. Първо X на квадрат, след това без квадрат, след това свободният член. като това:

И отново, не бързайте! Минус пред Х на квадрат може наистина да ви разстрои. Лесно се забравя... Отърви се от минуса. как? Да, както беше казано в предишната тема! Трябва да умножим цялото уравнение по -1. Получаваме:

Но сега можете спокойно да запишете формулата за корените, да изчислите дискриминанта и да завършите решаването на примера. Решете сами. Сега трябва да имате корени 2 и -1.

Рецепция втори.Проверете корените! Според теоремата на Виета. Не се страхувайте, ще ви обясня всичко! Проверка последноуравнение. Тези. тази, която използвахме, за да запишем формулата на корена. Ако (както в този пример) коеф а = 1, проверката на корените е лесна. Достатъчно е да ги умножите. Резултатът трябва да е безплатен член, т.е. в нашия случай -2. Моля, обърнете внимание, не 2, а -2! Безплатен член с твоя знак . Ако не се получи, това означава, че вече сте се прецакали някъде. Потърсете грешката. Ако работи, трябва да добавите корените. Последна и последна проверка. Коефициентът трябва да бъде bс противоположност познат. В нашия случай -1+2 = +1. Коефициент b, което е преди X, е равно на -1. Значи всичко е точно!
Жалко е, че това е толкова просто само за примери, където x на квадрат е чисто, с коефициент а = 1.Но поне проверете такива уравнения! Всички по-малко грешкище.

Прием трети. Ако вашето уравнение има дробни коефициенти, отървете се от дробите! Умножете уравнението по общ знаменател, както е описано в предишния раздел. Когато работите с дроби, грешките продължават да се прокрадват по някаква причина...

Между другото, обещах да опростя злия пример с куп минуси. Моля те! Ето го.

За да не се объркаме от минусите, умножаваме уравнението по -1. Получаваме:

това е! Решаването е удоволствие!

И така, нека обобщим темата.

Практически съвети:

1. Преди да решим, привеждаме квадратното уравнение в стандартна форма и го изграждаме вярно.

2. Ако има отрицателен коефициент пред X на квадрат, ние го елиминираме, като умножим цялото уравнение по -1.

3. Ако коефициентите са дробни, елиминираме дробите, като умножим цялото уравнение по съответния коефициент.

4. Ако х на квадрат е чисто, неговият коефициент е равен на едно, решението може лесно да се провери с помощта на теоремата на Виета. направи го!

Дробни уравнения. ОДЗ.

Продължаваме да овладяваме уравненията. Вече знаем как да работим с линейни и квадратни уравнения. Последният оставен изглед - дробни уравнения. Или се наричат ​​​​и много по-уважително - дробен рационални уравнения . Това е едно и също нещо.

Дробни уравнения.

Както подсказва името, тези уравнения непременно съдържат дроби. Но не само дроби, а дроби, които имат неизвестен в знаменател. Поне в едно. Например:

Нека ви напомня, че ако знаменателите са само числа, това са линейни уравнения.

Как да решим дробни уравнения? Първо, отървете се от дробите! След това уравнението най-често се превръща в линейно или квадратно. И тогава знаем какво да правим... В някои случаи може да се превърне в идентичност, като 5=5 или неправилен израз, като 7=2. Но това рядко се случва. Ще спомена това по-долу.

Но как да се отървем от дробите!? Много просто. Прилагане на същите идентични трансформации.

Трябва да умножим цялото уравнение по същия израз. Така че всички знаменатели са намалени! Всичко веднага ще стане по-лесно. Нека обясня с пример. Нека трябва да решим уравнението:

Както се преподава в младши класове? Преместваме всичко на една страна, привеждаме го към общ знаменател и т.н. Забравете как лош сън! Това е, което трябва да направите, когато събирате или изваждате дроби. Или работите с неравенства. И в уравненията ние незабавно умножаваме двете страни по израз, който ще ни даде възможност да намалим всички знаменатели (т.е. по същество с общ знаменател). И какъв е този израз?

От лявата страна намаляването на знаменателя изисква умножение по х+2. А отдясно се изисква умножение по 2. Това означава, че уравнението трябва да се умножи по 2(x+2). Умножете:

Това е обичайно умножение на дроби, но ще го опиша подробно:

Моля, обърнете внимание, че все още не отварям скобата (x + 2)! И така, изцяло го пиша:

От лявата страна се свива изцяло (x+2), а вдясно 2. Което се изискваше! След намаляване получаваме линеенуравнение:

И всеки може да реши това уравнение! х = 2.

Нека решим друг пример, малко по-сложен:

Ако си спомним, че 3 = 3/1 и 2x = 2x/ 1, можем да напишем:

И отново се отърваваме от това, което наистина не харесваме - дроби.

Виждаме, че за да намалим знаменателя с X, трябва да умножим дробта по (x – 2). И малко не са пречка за нас. Е, нека да умножим. Всичкилявата страна и всичкидясна страна:

Отново скоби (x – 2)Не разкривам. Работя със скобата като цяло като един номер! Това трябва да се прави винаги, в противен случай нищо няма да се намали.

С чувство на дълбоко удовлетворение намаляваме (x – 2)и получаваме уравнение без никакви дроби, с линийка!

Сега нека отворим скобите:

Носим подобни, преместваме всичко от лявата страна и получаваме:

Класическо квадратно уравнение. Но минусът напред не е добър. Винаги можете да се отървете от него, като умножите или разделите на -1. Но ако се вгледате внимателно в примера, ще забележите, че е най-добре да разделите това уравнение на -2! С един замах минусът ще изчезне и коефициентите ще станат по-привлекателни! Разделете на -2. От лявата страна - термин по член, а отдясно - просто разделяме нула на -2, нула и получаваме:

Решаваме чрез дискриминанта и проверяваме с помощта на теоремата на Виета. получаваме x = 1 и x = 3. Два корена.

Както можете да видите, в първия случай уравнението след трансформацията стана линейно, но тук то стана квадратно. Случва се, след като се отървете от дроби, всички X се намаляват. Нещо остава, като 5=5. Това означава, че x може да бъде всичко. Каквото и да е, все ще бъде намалено. И се оказва чистата истина 5=5. Но след като се отървете от дробите, може да се окаже, че е напълно невярно, като 2=7. И това означава, че няма решения! Всяко X се оказва невярно.

Реализира основното решение дробни уравнения ? Това е просто и логично. Променяме оригиналния израз, така че всичко, което не ни харесва, да изчезне. Или пречи. В случая това са дроби. Ще направим същото с всякакви сложни примери с логаритми, синуси и други ужасии. Ние ВинагиНека се отървем от всичко това.

Трябва обаче да променим оригиналния израз в посоката, от която се нуждаем според правилата, да... Овладяването на което е подготовка за Единния държавен изпит по математика. Така че ние го овладяваме.

Сега ще научим как да заобиколим един от основни засади на Единния държавен изпит! Но първо, нека видим дали попадате в него или не?

Нека да разгледаме един прост пример:

Материята вече е позната, умножаваме двете страни по (x – 2), получаваме:

Напомням, със скоби (x – 2)Ние работим като с едно цялостно изражение!

Тук вече не съм писал в знаменателите, недостойно е... И не съм теглил скоби в знаменателите, освен х – 2няма нищо, не е нужно да рисувате. Нека съкратим:

Отворете скобите, преместете всичко наляво и дайте подобни:

Решаваме, проверяваме, получаваме два корена. х = 2И х = 3. страхотно

Да предположим, че заданието казва да се запише коренът или тяхната сума, ако има повече от един корен. Какво ще пишем?

Ако решите, че отговорът е 5, вие бяха устроени от засада. И задачата няма да ви бъде кредитирана. Напразно са работили... Верният отговор е 3.

какво има?! И вие се опитвате да направите проверка. Заменете стойностите на неизвестното в оригиналенпример. И ако при х = 3всичко ще расте заедно чудесно, получаваме 9 = 9, тогава кога х = 2Ще бъде деление на нула! Това, което абсолютно не можете да направите. Средства х = 2не е решение и не се взема предвид в отговора. Това е така нареченият външен или допълнителен корен. Ние просто го изхвърляме. Последният корен е един. х = 3.

Как така?! – чувам възмутени възгласи. Учеха ни, че едно уравнение може да се умножи по израз! Това е идентична трансформация!

Да, идентични. При малко условие - изразът, с който умножаваме (делим) - различен от нула. А х – 2при х = 2е равно на нула! Така че всичко е справедливо.

И така, какво да правим сега?! Не умножавайте по израз? Трябва ли да проверявам всеки път? Пак неясно!

Спокойно! Не изпадайте в паника!

В тази трудна ситуация три магически букви ще ни спасят. знам какво си мислиш вярно! това ОДЗ . Зона на приемливите стойности.

Надявам се, че след изучаването на тази статия ще научите как да намирате корените на пълно квадратно уравнение.

С помощта на дискриминанта се решават само пълни квадратни уравнения, използват се и други методи, които ще намерите в статията „Решаване на непълни квадратни уравнения“.

Кои квадратни уравнения се наричат ​​пълни? това уравнения от вида ax 2 + b x + c = 0, където коефициентите a, b и c не са равни на нула. И така, за да решим пълно квадратно уравнение, трябва да изчислим дискриминанта D.

D = b 2 – 4ac.

В зависимост от стойността на дискриминанта ще запишем отговора.

Ако дискриминантът е отрицателно число (D< 0),то корней нет.

Ако дискриминантът е нула, тогава x = (-b)/2a. Когато дискриминантът е положително число (D > 0),

тогава x 1 = (-b - √D)/2a и x 2 = (-b + √D)/2a.

например. Решете уравнението х 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Отговор: 2.

Решете уравнение 2 х 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Отговор: няма корени.

Решете уравнение 2 х 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Отговор: – 3,5; 1.

Така че нека си представим решението на пълни квадратни уравнения, използвайки диаграмата на Фигура 1.

С помощта на тези формули можете да решите всяко пълно квадратно уравнение. Просто трябва да внимавате да уравнението беше написано като полином от стандартната форма

А х 2 + bx + c,в противен случай може да направите грешка. Например, като пишете уравнението x + 3 + 2x 2 = 0, можете погрешно да решите, че

a = 1, b = 3 и c = 2. Тогава

D = 3 2 – 4 1 2 = 1 и тогава уравнението има два корена. И това не е вярно. (Вижте решение на пример 2 по-горе).

Следователно, ако уравнението не е написано като полином от стандартната форма, първо пълното квадратно уравнение трябва да бъде написано като полином от стандартната форма (мономът с най-голям показател трябва да е първи, т.е. А х 2 , след това с по-малко bxи след това безплатен член с.

Когато решавате редуцирано квадратно уравнение и квадратно уравнение с четен коефициент във втория член, можете да използвате други формули. Нека се запознаем с тези формули. Ако в пълно квадратно уравнение вторият член има четен коефициент (b = 2k), тогава можете да решите уравнението, като използвате формулите, показани на диаграмата на Фигура 2.

Пълно квадратно уравнение се нарича намалено, ако коефициентът при х 2 е равно на едно и уравнението приема формата x 2 + px + q = 0. Такова уравнение може да бъде дадено за решение или може да се получи чрез разделяне на всички коефициенти на уравнението на коефициента А, застанал на х 2 .

Фигура 3 показва диаграма за решаване на редуцирания квадрат
уравнения. Нека да разгледаме пример за приложението на формулите, обсъдени в тази статия.

Пример. Решете уравнението

3х 2 + 6x – 6 = 0.

Нека решим това уравнение с помощта на формулите, показани на диаграмата на Фигура 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Отговор: –1 – √3; –1 + √3

Можете да забележите, че коефициентът на x в това уравнение е четно число, тоест b = 6 или b = 2k, откъдето k = 3. Тогава нека се опитаме да решим уравнението, като използваме формулите, показани в диаграмата на фигура D 1 = 3 2 – 3 (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Отговор: –1 – √3; –1 + √3. Забелязвайки, че всички коефициенти в това квадратно уравнение се делят на 3 и извършвайки делението, получаваме намаленото квадратно уравнение x 2 + 2x – 2 = 0. Решете това уравнение, като използвате формулите за намаленото квадратно уравнение
уравнения фигура 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Отговор: –1 – √3; –1 + √3.

Както можете да видите, при решаването на това уравнение с помощта на различни формули получихме един и същ отговор. Следователно, след като сте усвоили напълно формулите, показани на диаграмата на фигура 1, вие винаги ще можете да решите всяко пълно квадратно уравнение.

blog.site, при пълно или частично копиране на материал е необходима връзка към първоизточника.

Квадратно уравнение - лесно за решаване! *Наричано по-долу „KU“.Приятели, изглежда, че не може да има нищо по-просто в математиката от решаването на такова уравнение. Но нещо ми подсказа, че много хора имат проблеми с него. Реших да видя колко импресии при поискване дава Yandex на месец. Ето какво се случи, вижте:


Какво означава? Това означава, че около 70 000 души на месец търсят тази информация, какво общо има това лято и какво ще се случи сред учебна година— ще има два пъти повече заявки. Това не е изненадващо, защото онези момчета и момичета, които отдавна са завършили училище и се подготвят за Единния държавен изпит, търсят тази информация, а учениците също се стремят да освежат паметта си.

Въпреки факта, че има много сайтове, които ви казват как да решите това уравнение, реших също да допринеса и да публикувам материала. Първо, искам посетителите да идват на сайта ми въз основа на тази заявка; второ, в други статии, когато се появи темата за „KU“, ще дам връзка към тази статия; трето, ще ви разкажа малко повече за неговото решение, отколкото обикновено се посочва в други сайтове. Да започваме!Съдържание на статията:

Квадратно уравнение е уравнение от вида:

където коефициентите a,bи с произволни числа, където a≠0.

IN училищен курсматериалът е даден в следната форма - уравненията са условно разделени на три класа:

1. Те ​​имат два корена.

2. *Имат само един корен.

3. Нямат корени. Тук си струва специално да се отбележи, че те нямат истински корени

Как се изчисляват корените? Просто!

Изчисляваме дискриминанта. Под тази „ужасна“ дума се крие много проста формула:

Формулите на корените са както следва:

*Трябва да знаете тези формули наизуст.

Можете веднага да запишете и решите:

Пример:


1. Ако D > 0, тогава уравнението има два корена.

2. Ако D = 0, тогава уравнението има един корен.

3. Ако Д< 0, то уравнение не имеет действительных корней.

Нека да разгледаме уравнението:


от по този повод, когато дискриминантът е нула, в училищния курс се казва, че резултатът е един корен, тук е равен на девет. Всичко е точно, така е, но...

Тази идея е донякъде неправилна. Всъщност има два корена. Да, да, не се изненадвайте, получавате два равни корена и за да бъдем математически точни, тогава отговорът трябва да напише два корена:

x 1 = 3 x 2 = 3

Но това е така - малко отклонение. В училище можете да го запишете и да кажете, че има един корен.

Сега следващият пример:


Както знаем, не може да се вземе корен от отрицателно число, така че в този случай няма решение.

Това е целият процес на вземане на решение.

Квадратична функция.

Това показва как изглежда решението геометрично. Това е изключително важно да се разбере (в бъдеще в една от статиите ще анализираме подробно решението на квадратното неравенство).

Това е функция на формата:

където x и y са променливи

a, b, c – дадени числа, като a ≠ 0

Графиката е парабола:

Тоест, оказва се, че чрез решаване на квадратно уравнение с "y" равно на нула, намираме точките на пресичане на параболата с оста x. Може да има две от тези точки (дискриминантът е положителен), една (дискриминантът е нула) и нито една (дискриминантът е отрицателен). Подробности за квадратична функция можете да погледнетестатия от Инна Фелдман.

Нека да разгледаме примери:

Пример 1: Решете 2x 2 +8 х–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Отговор: x 1 = 8 x 2 = –12

*Беше възможно незабавно да се разделят лявата и дясната страна на уравнението на 2, тоест да се опрости. Изчисленията ще бъдат по-лесни.

Пример 2: Решете х 2–22 х+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Открихме, че x 1 = 11 и x 2 = 11

В отговора е допустимо да се запише x = 11.

Отговор: x = 11

Пример 3: Решете x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминантът е отрицателен, няма решение в реални числа.

Отговор: няма решение

Дискриминантът е отрицателен. Има решение!

Тук ще говорим за решаване на уравнението в случай, когато се получи отрицателен дискриминант. Знаете ли нещо за комплексните числа? Тук няма да навлизам в подробности защо и къде са възникнали и каква е тяхната конкретна роля и необходимост в математиката, това е тема за голяма отделна статия.

Понятието комплексно число.

Малко теория.

Комплексно число z е число от формата

z = a + bi

където a и b са реални числа, i е така наречената имагинерна единица.

а+би – това е ЕДИНСТВЕНО ЧИСЛО, а не добавяне.

Въображаемата единица е равна на корен от минус едно:

Сега разгледайте уравнението:


Получаваме два спрегнати корена.

Непълно квадратно уравнение.

Нека разгледаме специални случаи, това е, когато коефициентът "b" или "c" е равен на нула (или и двата са равни на нула). Те могат да бъдат решени лесно без никакви дискриминационни проблеми.

Случай 1. Коефициент b = 0.

Уравнението става:

Нека трансформираме:

Пример:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Случай 2. Коефициент c = 0.

Уравнението става:

Нека трансформираме и факторизираме:

*Произведението е равно на нула, когато поне един от факторите е равен на нула.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коефициенти b = 0 и c = 0.

Тук е ясно, че решението на уравнението винаги ще бъде x = 0.

Полезни свойства и модели на коефициентите.

Има свойства, които ви позволяват да решавате уравнения с големи коефициенти.

Ах 2 + bx+ c=0 има равенство

а + b+ c = 0,това

- ако за коефициентите на уравнението Ах 2 + bx+ c=0 има равенство

а+ c =b, това

Тези свойства помагат да се вземе решение определен типуравнения

Пример 1: 5001 х 2 –4995 х – 6=0

Сумата на коефициентите е 5001+( 4995)+( 6) = 0, което означава

Пример 2: 2501 х 2 +2507 х+6=0

Равенството е в сила а+ c =b, Средства

Закономерности на коефициентите.

1. Ако в уравнението ax 2 + bx + c = 0 коефициентът "b" е равен на (a 2 +1), а коефициентът "c" е числено равен на коефициента "a", тогава неговите корени са равни

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Пример. Разгледайте уравнението 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Ако в уравнението ax 2 – bx + c = 0 коефициентът “b” е равен на (a 2 +1), а коефициентът “c” е числено равен на коефициента “a”, то неговите корени са равни

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Пример. Разгледайте уравнението 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ако в ур. ax 2 + bx – c = 0 коефициент „b“ е равно на (a 2 – 1), и коефициент „c“ е числено равен на коефициента "а", тогава неговите корени са равни

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Пример. Разгледайте уравнението 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Ако в уравнението ax 2 – bx – c = 0 коефициентът „b” е равен на (a 2 – 1), а коефициентът c е числено равен на коефициента „a”, то неговите корени са равни

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Пример. Разгледайте уравнението 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Теорема на Виета.

Теоремата на Виета е кръстена на известния френски математик Франсоа Виета. Използвайки теоремата на Виета, можем да изразим сумата и произведението на корените на произволно KU по отношение на неговите коефициенти.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Общо числото 14 дава само 5 и 9. Това са корените. С известно умение, използвайки представената теорема, можете веднага да решите много квадратни уравнения устно.

Освен това теоремата на Виета. Удобен е с това, че след решаване на квадратно уравнение по обичайния начин (чрез дискриминант) могат да се проверят получените корени. Препоръчвам да правите това винаги.

НАЧИН НА ТРАНСПОРТИРАНЕ

С този метод коефициентът "а" се умножава по свободния термин, сякаш "хвърлен" към него, поради което се нарича метод "трансфер".Този метод се използва, когато корените на уравнението могат лесно да бъдат намерени с помощта на теоремата на Виета и най-важното, когато дискриминантът е точен квадрат.

Ако А± b+c≠ 0, тогава се използва техниката на прехвърляне, например:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Използвайки теоремата на Vieta в уравнение (2), е лесно да се определи, че x 1 = 10 x 2 = 1

Получените корени на уравнението трябва да бъдат разделени на 2 (тъй като двете бяха „хвърлени“ от x 2), получаваме

x 1 = 5 x 2 = 0,5.

Каква е обосновката? Вижте какво става.

Дискриминантите на уравнения (1) и (2) са равни:

Ако погледнете корените на уравненията, получавате само различни знаменатели и резултатът зависи точно от коефициента на x 2:


Вторият (модифициран) има корени, които са 2 пъти по-големи.

Следователно, разделяме резултата на 2.

*Ако прехвърлим тройката, ще разделим резултата на 3 и т.н.

Отговор: x 1 = 5 x 2 = 0,5

пл. ur-ie и Единен държавен изпит.

Ще ви разкажа накратко за важността му - ТРЯБВА ДА МОЖЕТЕ ДА РЕШИТЕ ​​бързо и без да мислите, трябва да знаете формулите на корените и дискриминантите наизуст. Много задачи, включени в задачите на Единния държавен изпит, се свеждат до решаване на квадратно уравнение (включително геометрични).

Нещо, което си струва да се отбележи!

1. Формата на записване на уравнение може да бъде „неявна“. Например е възможен следният запис:

15+ 9x 2 - 45x = 0 или 15x+42+9x 2 - 45x=0 или 15 -5x+10x 2 = 0.

Трябва да го приведете в стандартна форма (за да не се объркате при решаването).

2. Запомнете, че x е неизвестна величина и може да се обозначи с всяка друга буква - t, q, p, h и др.



 


Прочетете:



Отчитане на разчети с бюджета

Отчитане на разчети с бюджета

Сметка 68 в счетоводството служи за събиране на информация за задължителни плащания към бюджета, удържани както за сметка на предприятието, така и...

Чийзкейкове от извара на тиган - класически рецепти за пухкави чийзкейкове Чийзкейкове от 500 г извара

Чийзкейкове от извара на тиган - класически рецепти за пухкави чийзкейкове Чийзкейкове от 500 г извара

Продукти: (4 порции) 500 гр. извара 1/2 чаша брашно 1 яйце 3 с.л. л. захар 50 гр. стафиди (по желание) щипка сол сода бикарбонат...

Салата Черна перла със сини сливи Салата Черна перла със сини сливи

Салата

Добър ден на всички, които се стремят към разнообразие в ежедневната си диета. Ако сте уморени от еднообразни ястия и искате да зарадвате...

Рецепти за лечо с доматено пюре

Рецепти за лечо с доматено пюре

Много вкусно лечо с доматено пюре, като българско лечо, приготвено за зимата. Така обработваме (и изяждаме!) 1 торба чушки в нашето семейство. И кой бих...

feed-image RSS