Dom - Hodnik
Zbroj brojeva u formuli aritmetičke progresije. Aritmetička progresija. Detaljna teorija s primjerima (2019.)

Aritmetička progresija imenovati niz brojeva (uvjeti progresije)

U kojem se svaki sljedeći pojam razlikuje od prethodnog novim pojmom koji se također naziva razlika u koraku ili progresiji.

Dakle, određivanjem koraka progresije i njegovog prvog člana, možete pronaći bilo koji od njegovih elemenata pomoću formule

Svojstva aritmetičke progresije

1) Svaki član aritmetičke progresije, počevši od drugog broja, je aritmetička sredina prethodnog i sljedećeg člana progresije.

Vrijedi i obrnuto. Ako je aritmetička sredina susjednih neparnih (parnih) članova progresije jednaka članu koji stoji između njih, tada je ovaj niz brojeva aritmetička progresija. Pomoću ove izjave vrlo je lako provjeriti bilo koji niz.

Također, pomoću svojstva aritmetičke progresije, gornja formula se može generalizirati na sljedeću

To je lako provjeriti ako izraze napišete desno od znaka jednakosti

Često se koristi u praksi za pojednostavljenje proračuna u problemima.

2) Zbroj prvih n članova aritmetičke progresije izračunava se pomoću formule

Zapamtite dobro formulu za zbroj aritmetičke progresije, nezamjenjiva je u izračunima i često se nalazi u jednostavnim životnim situacijama.

3) Ako trebate pronaći ne cijeli zbroj, već dio niza počevši od njegovog k-tog člana, tada će vam sljedeća formula zbroja biti korisna

4) Od praktičnog je interesa pronalaženje zbroja n članova aritmetičke progresije počevši od k-tog broja. Da biste to učinili, upotrijebite formulu

Time je teorijski materijal završen i prelazi se na rješavanje uobičajenih problema u praksi.

Primjer 1. Nađite četrdeseti član aritmetičke progresije 4;7;...

Riješenje:

Prema stanju koje imamo

Odredimo korak napredovanja

Koristeći dobro poznatu formulu, nalazimo četrdeseti član progresije

Primjer 2. Aritmetička progresija dana je njegovim trećim i sedmim članom. Nađi prvi član progresije i zbroj desetica.

Riješenje:

Zapišimo zadane elemente progresije pomoću formula

Oduzimamo prvu od druge jednadžbe, kao rezultat nalazimo korak progresije

Zamjenjujemo pronađenu vrijednost u bilo koju od jednadžbi kako bismo pronašli prvi član aritmetičke progresije

Izračunavamo zbroj prvih deset članova progresije

Bez korištenja složenih izračuna pronašli smo sve potrebne količine.

Primjer 3. Aritmetička progresija dana je nazivnikom i jednim od njegovih članova. Pronađite prvi član progresije, zbroj njegovih 50 članova počevši od 50 i zbroj prvih 100.

Riješenje:

Zapišimo formulu za stoti element progresije

i pronađite prvu

Na temelju prvog nalazimo 50. član progresije

Pronalaženje zbroja dijela progresije

i zbroj prvih 100

Iznos napredovanja je 250.

Primjer 4.

Odredite broj članova aritmetičke progresije ako:

a3-a1=8, a2+a4=14, Sn=111.

Riješenje:

Napišimo jednadžbe u smislu prvog člana i koraka progresije i odredimo ih

Dobivene vrijednosti zamijenimo formulom zbroja kako bismo odredili broj članova u zbroju

Provodimo pojednostavljenja

i riješiti kvadratnu jednadžbu

Od dvije pronađene vrijednosti, samo broj 8 odgovara uvjetima problema. Dakle, zbroj prvih osam članova progresije je 111.

Primjer 5.

Riješite jednadžbu

1+3+5+...+x=307.

Rješenje: Ova jednadžba je zbroj aritmetičke progresije. Napišimo njegov prvi član i pronađimo razliku u progresiji

Ako za svaki prirodni broj n odgovara realnom broju a n , onda kažu da se daje niz brojeva :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Dakle, niz brojeva je funkcija prirodnog argumenta.

Broj a 1 nazvao prvi član niza , broj a 2 drugi član niza , broj a 3 treći i tako dalje. Broj a n nazvao n-ti pojam sekvence , i prirodan broj nnjegov broj .

Od dva susjedna člana a n I a n +1 član niza a n +1 nazvao naknadni (prema a n ), A a n prethodni (prema a n +1 ).

Da biste definirali niz, trebate navesti metodu koja vam omogućuje pronalazak člana niza s bilo kojim brojem.

Često se slijed navodi pomoću n-ti član formule , odnosno formula koja omogućuje određivanje člana niza po njegovom broju.

Na primjer,

niz pozitivnih neparnih brojeva može se dati formulom

a n= 2n- 1,

i slijed izmjeničnog 1 I -1 - formula

b n = (-1)n +1 .

Redoslijed se može odrediti rekurentna formula, odnosno formula koja izražava bilo koji član niza, počevši od nekih, preko prethodnih (jednog ili više) članova.

Na primjer,

Ako a 1 = 1 , A a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Ako a 1= 1, a 2 = 1, a n +2 = a n + a n +1 , tada se prvih sedam članova numeričkog niza uspostavlja na sljedeći način:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Nizovi se mogu konačni I beskrajan .

Niz se zove ultimativno , ako ima konačan broj članova. Niz se zove beskrajan , ako ima beskonačno mnogo članova.

Na primjer,

niz dvoznamenkastih prirodni brojevi:

10, 11, 12, 13, . . . , 98, 99

konačni.

Niz prostih brojeva:

2, 3, 5, 7, 11, 13, . . .

beskrajan.

Niz se zove povećavajući se , ako je svaki njegov član, počevši od drugog, veći od prethodnog.

Niz se zove smanjujući se , ako je svaki njegov član, počevši od drugog, manji od prethodnog.

Na primjer,

2, 4, 6, 8, . . . , 2n, . . . — rastući niz;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — silazni niz.

Naziva se niz čiji se elementi ne smanjuju s povećanjem broja ili, obrnuto, ne povećavaju monoton niz .

Konkretno, monotoni nizovi su rastući i opadajući nizovi.

Aritmetička progresija

Aritmetička progresija je niz u kojem je svaki član, počevši od drugog, jednak prethodnom, kojemu se dodaje isti broj.

a 1 , a 2 , a 3 , . . . , a n, . . .

je aritmetička progresija ako za bilo koji prirodni broj n uvjet je ispunjen:

a n +1 = a n + d,

Gdje d - određeni broj.

Stoga je razlika između sljedećeg i prethodnog člana dane aritmetičke progresije uvijek konstantna:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

Broj d nazvao razlika aritmetičke progresije.

Za definiranje aritmetičke progresije dovoljno je navesti njen prvi član i razliku.

Na primjer,

Ako a 1 = 3, d = 4 , tada nalazimo prvih pet članova niza kako slijedi:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

Za aritmetičku progresiju s prvim članom a 1 i razlika d nju n

a n = a 1 + (n- 1)d.

Na primjer,

pronaći trideseti član aritmetičke progresije

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

onda očito

a n=
a n-1 + a n+1
2

Svaki član aritmetičke progresije, počevši od drugog, jednak je aritmetičkoj sredini prethodnog i sljedećih članova.

brojevi a, b i c su uzastopni članovi neke aritmetičke progresije ako i samo ako je jedan od njih jednak aritmetičkoj sredini druga dva.

Na primjer,

a n = 2n- 7 , je aritmetička progresija.

Iskoristimo gornju izjavu. Imamo:

a n = 2n- 7,

n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Stoga,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Imajte na umu da n th član aritmetičke progresije može se pronaći ne samo kroz a 1 , ali i svaki prethodni a k

a n = a k + (n- k)d.

Na primjer,

Za a 5 može se zapisati

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

onda očito

a n=
a n-k +a n+k
2

bilo koji član aritmetičke progresije, počevši od drugog, jednak je polovici zbroja jednako razmaknutih članova te aritmetičke progresije.

Osim toga, za bilo koju aritmetičku progresiju vrijedi sljedeća jednakost:

a m + a n = a k + a l,

m + n = k + l.

Na primjer,

u aritmetičkoj progresiji

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, jer

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

prvi n članova aritmetičke progresije jednak je umnošku polovine zbroja ekstremnih članova i broja članova:

Odavde, posebice, slijedi da ako trebate zbrojiti pojmove

a k, a k +1 , . . . , a n,

tada prethodna formula zadržava svoju strukturu:

Na primjer,

u aritmetičkoj progresiji 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Ako je dana aritmetička progresija, onda količine a 1 , a n, d, n IS n povezan s dvije formule:

Stoga, ako su dane vrijednosti tri od ovih veličina, tada se odgovarajuće vrijednosti druge dvije veličine određuju iz ovih formula, kombiniranih u sustav dviju jednadžbi s dvije nepoznanice.

Aritmetička progresija je monoton niz. pri čemu:

  • Ako d > 0 , tada se povećava;
  • Ako d < 0 , tada se smanjuje;
  • Ako d = 0 , tada će niz biti stacionaran.

Geometrijska progresija

Geometrijska progresija je niz u kojem je svaki član, počevši od drugog, jednak prethodnom pomnoženom s istim brojem.

b 1 , b 2 , b 3 , . . . , b n, . . .

je geometrijska progresija ako za bilo koji prirodni broj n uvjet je ispunjen:

b n +1 = b n · q,

Gdje q ≠ 0 - određeni broj.

Dakle, omjer naknadnog roka danog geometrijska progresija postoji konstantan broj do prethodnog:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Broj q nazvao nazivnik geometrijske progresije.

Za definiranje geometrijske progresije dovoljno je navesti njen prvi član i nazivnik.

Na primjer,

Ako b 1 = 1, q = -3 , tada nalazimo prvih pet članova niza kako slijedi:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 i nazivnik q nju n Taj se član može pronaći pomoću formule:

b n = b 1 · qn -1 .

Na primjer,

pronaći sedmi član geometrijske progresije 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

onda očito

b n 2 = b n -1 · b n +1 ,

svaki član geometrijske progresije, počevši od drugog, jednak je geometrijskoj sredini (proporcionalnoj) prethodnog i sljedećih članova.

Budući da vrijedi i obrnuto, vrijedi sljedeća izjava:

brojevi a, b i c su uzastopni članovi neke geometrijske progresije ako i samo ako je kvadrat jednog od njih jednak umnošku druga dva, odnosno, jedan od brojeva je geometrijska sredina druga dva.

Na primjer,

Dokažimo da niz zadan formulom b n= -3 2 n , je geometrijska progresija. Iskoristimo gornju izjavu. Imamo:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Stoga,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

što dokazuje željenu tvrdnju.

Imajte na umu da n Član geometrijske progresije može se pronaći ne samo kroz b 1 , ali i svaki prethodni član b k , za što je dovoljno koristiti formulu

b n = b k · qn - k.

Na primjer,

Za b 5 može se zapisati

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

onda očito

b n 2 = b n - k· b n + k

kvadrat bilo kojeg člana geometrijske progresije, počevši od drugog, jednak je umnošku članova te progresije jednako udaljenih od njega.

Osim toga, za svaku geometrijsku progresiju vrijedi jednakost:

b m· b n= b k· b l,

m+ n= k+ l.

Na primjer,

u geometrijskoj progresiji

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , jer

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

prvi n članovi geometrijske progresije s nazivnikom q 0 izračunava se formulom:

I kada q = 1 - prema formuli

S n= nb 1

Imajte na umu da ako trebate zbrojiti pojmove

b k, b k +1 , . . . , b n,

tada se koristi formula:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

Na primjer,

u geometrijskoj progresiji 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Ako je dana geometrijska progresija, onda količine b 1 , b n, q, n I S n povezan s dvije formule:

Stoga, ako su dane vrijednosti bilo koje tri od ovih veličina, tada se odgovarajuće vrijednosti druge dvije veličine određuju iz ovih formula, kombiniranih u sustav dviju jednadžbi s dvije nepoznanice.

Za geometrijsku progresiju s prvim članom b 1 i nazivnik q dogodi se sljedeće svojstva monotonosti :

  • progresija se povećava ako je ispunjen jedan od sljedećih uvjeta:

b 1 > 0 I q> 1;

b 1 < 0 I 0 < q< 1;

  • Progresija se smanjuje ako je ispunjen jedan od sljedećih uvjeta:

b 1 > 0 I 0 < q< 1;

b 1 < 0 I q> 1.

Ako q< 0 , tada je geometrijska progresija izmjenična: njezini članovi s neparnim brojevima imaju isti predznak kao prvi član, a članovi s parnim brojevima imaju suprotan predznak. Jasno je da izmjenična geometrijska progresija nije monotona.

Proizvod prvog n članovi geometrijske progresije mogu se izračunati pomoću formule:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

Na primjer,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Beskonačno padajuća geometrijska progresija

Beskonačno padajuća geometrijska progresija zove se beskonačna geometrijska progresija čiji je nazivnik modula manji 1 , to je

|q| < 1 .

Imajte na umu da beskonačno padajuća geometrijska progresija ne mora biti padajući niz. Odgovara prilici

1 < q< 0 .

S takvim nazivnikom niz je izmjeničan. Na primjer,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Zbroj beskonačno opadajuće geometrijske progresije imenovati broj kojem se neograničeno približava zbroj prvih n članovi progresije s neograničenim povećanjem broja n . Taj je broj uvijek konačan i izražava se formulom

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Na primjer,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Odnos aritmetičke i geometrijske progresije

Aritmetička i geometrijska progresija su usko povezane. Pogledajmo samo dva primjera.

a 1 , a 2 , a 3 , . . . d , To

b a 1 , b a 2 , b a 3 , . . . b d .

Na primjer,

1, 3, 5, . . . - aritmetička progresija s razlikom 2 I

7 1 , 7 3 , 7 5 , . . . - geometrijska progresija s nazivnikom 7 2 .

b 1 , b 2 , b 3 , . . . - geometrijska progresija s nazivnikom q , To

log a b 1, log a b 2, log a b 3, . . . - aritmetička progresija s razlikom log aq .

Na primjer,

2, 12, 72, . . . - geometrijska progresija s nazivnikom 6 I

lg 2, lg 12, lg 72, . . . - aritmetička progresija s razlikom lg 6 .

Prije nego počnemo odlučivati problemi aritmetičke progresije, razmotrimo što je niz brojeva, budući da je to aritmetička progresija poseban slučaj niz brojeva.

Niz brojeva je brojčani skup čiji svaki element ima svoj redni broj. Elementi tog skupa nazivaju se članovima niza. Serijski broj elementa niza označen je indeksom:

Prvi element niza;

Peti element niza;

- “n-ti” element niza, tj. element "stoji u redu" na broju n.

Postoji odnos između vrijednosti elementa niza i njegovog rednog broja. Stoga niz možemo promatrati kao funkciju čiji je argument redni broj elementa niza. Drugim riječima, možemo to reći niz je funkcija prirodnog argumenta:

Redoslijed se može postaviti na tri načina:

1 . Redoslijed se može odrediti pomoću tablice. U ovom slučaju jednostavno postavljamo vrijednost svakog člana niza.

Na primjer, netko se odlučio baviti upravljanjem osobnim vremenom i za početak izračunati koliko vremena provodi na VKontakteu tijekom tjedna. Upisivanjem vremena u tablicu dobit će niz koji se sastoji od sedam elemenata:

Prvi redak tablice označava broj dana u tjednu, drugi - vrijeme u minutama. Vidimo da je u ponedjeljak netko proveo 125 minuta na VKontakteu, to jest u četvrtak - 248 minuta, a to jest u petak samo 15.

2 . Niz se može specificirati pomoću formule n-tog člana.

U ovom slučaju, ovisnost vrijednosti elementa niza o njegovom broju izražava se izravno u obliku formule.

Na primjer, ako , tada

Da bismo pronašli vrijednost elementa niza sa zadanim brojem, zamijenimo broj elementa u formulu n-tog člana.

Istu stvar činimo ako trebamo pronaći vrijednost funkcije ako je vrijednost argumenta poznata. Zamjenjujemo vrijednost argumenta u jednadžbu funkcije:

Ako npr. , To

Još jednom napominjem da u nizu, za razliku od proizvoljne numeričke funkcije, argument može biti samo prirodan broj.

3 . Niz se može odrediti pomoću formule koja izražava ovisnost vrijednosti člana niza broj n o vrijednostima prethodnih članova. U ovom slučaju nije nam dovoljno znati samo broj člana niza da bismo pronašli njegovu vrijednost. Moramo navesti prvi član ili prvih nekoliko članova niza.

Na primjer, razmotrite slijed ,

Možemo pronaći vrijednosti članova niza u nizu, počevši od trećeg:

To jest, svaki put, da bismo pronašli vrijednost n-tog člana niza, vraćamo se na prethodna dva. Ova metoda specificiranja niza se zove ponavljajući, od latinske riječi ponavljanje- vrati se.

Sada možemo definirati aritmetičku progresiju. Aritmetička progresija je jednostavan poseban slučaj niza brojeva.

Aritmetička progresija je numerički niz čiji je svaki član, počevši od drugog, jednak prethodnom pribrojenom istom broju.


Broj je pozvan razlika aritmetičke progresije. Razlika aritmetičke progresije može biti pozitivna, negativna ili jednaka nuli.

Ako je naslov="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} povećavajući se.

Na primjer, 2; 5; 8; jedanaest;...

Ako je , tada je svaki član aritmetičke progresije manji od prethodnog, a progresija je smanjujući se.

Na primjer, 2; -1; -4; -7;...

Ako , tada su svi članovi progresije jednaki istom broju, a progresija je stacionarni.

Na primjer, 2;2;2;2;...

Glavno svojstvo aritmetičke progresije:

Pogledajmo sliku.

Vidimo to

, a u isto vrijeme

Zbrajanjem ove dvije jednakosti dobivamo:

.

Podijelimo obje strane jednakosti s 2:

Dakle, svaki član aritmetičke progresije, počevši od drugog, jednak je aritmetičkoj sredini dva susjedna:

Štoviše, budući da

, a u isto vrijeme

, To

, i stoga

Svaki član aritmetičke progresije, počevši s title="k>l">, равен среднему арифметическому двух равноотстоящих. !}

Formula th člana.

Vidimo da članovi aritmetičke progresije zadovoljavaju sljedeće relacije:

i konačno

Dobili smo formula n-tog člana.

VAŽNO! Bilo koji član aritmetičke progresije može se izraziti kroz i. Poznavajući prvi član i razliku aritmetičke progresije, možete pronaći bilo koji od njegovih članova.

Zbroj n članova aritmetičke progresije.

U proizvoljnoj aritmetičkoj progresiji zbrojevi članova koji su jednako udaljeni od krajnjih međusobno su jednaki:

Razmotrimo aritmetičku progresiju s n članova. Neka zbroj n članova ove progresije bude jednak .

Posložimo uvjete progresije prvo uzlaznim redoslijedom brojeva, a zatim silaznim redoslijedom:

Dodajmo u paru:

Zbroj u svakoj zagradi je , broj parova je n.

Dobivamo:

Tako, zbroj n članova aritmetičke progresije može se pronaći pomoću formula:

Razmotrimo rješavanje problema aritmetičke progresije.

1 . Niz je dan formulom n-tog člana: . Dokažite da je ovaj niz aritmetička progresija.

Dokažimo da je razlika između dva susjedna člana niza jednaka istom broju.

Utvrdili smo da razlika između dva susjedna člana niza ne ovisi o njihovom broju i da je konstanta. Prema tome, po definiciji, ovaj niz je aritmetička progresija.

2 . S obzirom na aritmetičku progresiju -31; -27;...

a) Pronađite 31 član progresije.

b) Utvrdite je li broj 41 uključen u ovu progresiju.

A) Vidimo da ;

Zapišimo formulu za n-ti član naše progresije.

Općenito

U našem slučaju , Zato

Ili je aritmetika vrsta uređenog numeričkog niza čija se svojstva proučavaju školski tečaj algebra. Ovaj članak detaljno raspravlja o tome kako pronaći zbroj aritmetičke progresije.

Kakvo je to napredovanje?

Prije nego što prijeđemo na pitanje (kako pronaći zbroj aritmetičke progresije), vrijedi razumjeti o čemu govorimo.

Svaki niz realnih brojeva koji se dobije dodavanjem (oduzimanjem) neke vrijednosti svakom prethodnom broju naziva se algebarska (aritmetička) progresija. Ova definicija, kada se prevede na matematički jezik, ima oblik:

Ovdje je i redni broj elementa retka a i. Dakle, znajući samo jedan početni broj, možete lako vratiti cijelu seriju. Parametar d u formuli naziva se razlika progresije.

Lako se može pokazati da za razmatrani niz brojeva vrijedi sljedeća jednakost:

a n = a 1 + d * (n - 1).

To jest, da biste pronašli vrijednost n-tog elementa po redu, trebali biste dodati razliku d prvom elementu a 1 n-1 puta.

Koliki je zbroj aritmetičke progresije: formula

Prije davanja formule za navedeni iznos, vrijedi razmotriti jednostavan poseban slučaj. S obzirom na progresiju prirodnih brojeva od 1 do 10, trebate pronaći njihov zbroj. Budući da ima malo članova u progresiji (10), moguće je problem riješiti direktno, odnosno zbrojiti sve elemente redom.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Jednu stvar vrijedi razmotriti zanimljiva stvar: budući da se svaki član razlikuje od sljedećeg za istu vrijednost d = 1, tada će parno zbrajanje prvog s desetim, drugog s devetim i tako dalje dati isti rezultat. Stvarno:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Kao što vidite, postoji samo 5 ovih zbrojeva, odnosno točno dva puta manje od broja elemenata niza. Zatim množenjem broja zbrojeva (5) s rezultatom svakog zbroja (11) doći ćete do rezultata dobivenog u prvom primjeru.

Ako generaliziramo ove argumente, možemo napisati sljedeći izraz:

S n = n * (a 1 + a n) / 2.

Ovaj izraz pokazuje da uopće nije potrebno zbrajati sve elemente u nizu, dovoljno je znati vrijednost prvog a 1 i posljednjeg a n , kao i ukupni broj n uvjeti.

Smatra se da se Gauss prvi sjetio ove jednakosti kada je tražio rješenje zadanog problema. školski učitelj zadatak: zbrojiti prvih 100 cijelih brojeva.

Zbroj elemenata od m do n: formula

Formula navedena u prethodnom odlomku odgovara na pitanje kako pronaći zbroj aritmetičke progresije (prvi elementi), no često je u zadacima potrebno zbrojiti niz brojeva u sredini progresije. Kako to učiniti?

Na ovo pitanje najlakše ćemo odgovoriti na sljedećem primjeru: neka je potrebno pronaći zbroj članova od m-tog do n-tog. Da biste riješili problem, potrebno je predstaviti zadani segment od m do n progresije u obliku novog niza brojeva. U takvim m-ti prikazčlan a m će biti prvi, a a n će biti označen brojem n-(m-1). U ovom slučaju, primjenom standardne formule za zbroj, dobit će se sljedeći izraz:

S m n = (n - m + 1) * (a m + a n) / 2.

Primjer korištenja formula

Znajući kako pronaći zbroj aritmetičke progresije, vrijedi razmotriti jednostavan primjer korištenja gornjih formula.

Ispod je numerički niz, trebali biste pronaći zbroj njegovih članova, počevši od 5. i završavajući s 12.:

Zadani brojevi pokazuju da je razlika d jednaka 3. Pomoću izraza za n-ti element možete pronaći vrijednosti 5. i 12. člana progresije. Ispada:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Poznavajući vrijednosti brojeva na krajevima algebarske progresije koja se razmatra, kao i znajući koje brojeve u nizu zauzimaju, možete koristiti formulu za zbroj dobiven u prethodnom odlomku. Ispostavit će se:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Vrijedno je napomenuti da se ova vrijednost može dobiti drugačije: prvo pronađite zbroj prvih 12 elemenata pomoću standardne formule, zatim izračunajte zbroj prva 4 elementa koristeći istu formulu, zatim oduzmite drugi od prvog zbroja.

I. V. Jakovljev | Materijali iz matematike | MathUs.ru

Aritmetička progresija

Aritmetička progresija je posebna vrsta podslijed. Stoga, prije definiranja aritmetičke (a potom i geometrijske) progresije, moramo ukratko raspraviti važan koncept niz brojeva.

Naknadna slijed

Zamislite uređaj na čijem se ekranu jedan za drugim prikazuju određeni brojevi. Recimo 2; 7; 13; 1; 6; 0; 3; : : : Ovaj skup brojeva je upravo primjer niza.

Definicija. Brojevni niz je skup brojeva u kojem se svakom broju može dodijeliti jedinstveni broj (tj. povezati s jednim prirodnim brojem)1. Broj n naziva se n-ti član niza.

Dakle, u gornjem primjeru, prvi broj je 2, to je prvi član niza, koji se može označiti s a1; broj pet ima broj 6 je peti član niza, koji se može označiti s a5. Općenito, n-ti član niza označava se s an (ili bn, cn, itd.).

Vrlo zgodna situacija je kada se n-ti član niza može odrediti nekom formulom. Na primjer, formula an = 2n 3 specificira niz: 1; 1; 3; 5; 7; : : : Formula an = (1)n specificira niz: 1; 1; 1; 1; : : :

Nije svaki skup brojeva niz. Dakle, segment nije niz; sadrži "previše" brojeva za ponovno numeriranje. Skup R svih realnih brojeva također nije niz. Ove činjenice se dokazuju tijekom matematičke analize.

Aritmetička progresija: osnovne definicije

Sada smo spremni definirati aritmetičku progresiju.

Definicija. Aritmetička progresija je niz u kojem je svaki član (počevši od drugog) jednak zbroju prethodnog člana i nekog fiksnog broja (koji se naziva razlika aritmetičke progresije).

Na primjer, niz 2; 5; 8; jedanaest; : : : je aritmetička progresija s prvim članom 2 i razlikom 3. Niz 7; 2; 3; 8; : : : je aritmetička progresija s prvim članom 7 i razlikom 5. Niz 3; 3; 3; : : : je aritmetička progresija s razlikom jednakom nuli.

Ekvivalentna definicija: niz an naziva se aritmetičkom progresijom ako je razlika an+1 an konstantna vrijednost (neovisna o n).

Aritmetičku progresiju nazivamo rastućom ako je njezina razlika pozitivna, odnosno padajućom ako je njezina razlika negativna.

1 Ali ovdje je sažetija definicija: niz je funkcija definirana na skupu prirodnih brojeva. Na primjer, niz realnih brojeva je funkcija f: N ! R.

Prema zadanim postavkama, nizovi se smatraju beskonačnima, odnosno sadrže beskonačan broj brojeva. Ali nitko nam ne smeta da razmatramo konačne nizove; zapravo, svaki konačni skup brojeva može se nazvati konačnim nizom. Na primjer, završni niz je 1; 2; 3; 4; 5 se sastoji od pet brojeva.

Formula za n-ti član aritmetičke progresije

Lako je razumjeti da je aritmetička progresija u potpunosti određena dvama brojevima: prvim članom i razlikom. Stoga se postavlja pitanje: kako, znajući prvi član i razliku, pronaći proizvoljan član aritmetičke progresije?

Dobiti traženu formulu N-ti član aritmetičke progresije nije težak. Neka

aritmetička progresija s razlikom d. Imamo:

an+1 = an + d (n = 1; 2; : : :):

Posebno pišemo:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

i sada postaje jasno da je formula za an:

an = a1 + (n 1)d:

Problem 1. U aritmetičkoj progresiji 2; 5; 8; jedanaest; : : : pronađite formulu za n-ti član i izračunajte stoti član.

Riješenje. Prema formuli (1) imamo:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Svojstvo i predznak aritmetičke progresije

Svojstvo aritmetičke progresije. U aritmetičkoj progresiji za bilo koji

Drugim riječima, svaki član aritmetičke progresije (počevši od drugog) je aritmetička sredina svojih susjednih članova.

Dokaz. Imamo:

a n 1+ a n+1

(d) + (an + d)

što je i bilo potrebno.

Općenitije, aritmetička progresija an zadovoljava jednakost

a n = a n k+ a n+k

za svaki n > 2 i svaki prirodni k< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Pokazuje se da formula (2) služi ne samo kao nužan nego i kao dovoljan uvjet da niz bude aritmetička progresija.

Znak aritmetičke progresije. Ako jednakost (2) vrijedi za sve n > 2, tada je niz an aritmetička progresija.

Dokaz. Prepišimo formulu (2) na sljedeći način:

a na n 1= a n+1a n:

Iz ovoga vidimo da razlika an+1 an ne ovisi o n, a to upravo znači da je niz an aritmetička progresija.

Svojstvo i predznak aritmetičke progresije mogu se formulirati u obliku jednog iskaza; Radi praktičnosti, učinit ćemo to za tri broja (to je situacija koja se često događa u problemima).

Karakterizacija aritmetičke progresije. Tri broja a, b, c tvore aritmetičku progresiju ako i samo ako je 2b = a + c.

Zadatak 2. (MSU, Ekonomski fakultet, 2007.) Tri broja 8x, 3 x2 i 4 navedenim redom tvore padajuću aritmetičku progresiju. Pronađite x i označite razliku ove progresije.

Riješenje. Po svojstvu aritmetičke progresije imamo:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

Ako je x = 1, tada dobivamo opadajuću progresiju od 8, 2, 4 s razlikom od 6. Ako je x = 5, tada dobivamo rastuću progresiju od 40, 22, 4; ovaj slučaj nije prikladan.

Odgovor: x = 1, razlika je 6.

Zbroj prvih n članova aritmetičke progresije

Legenda kaže da je jednog dana učitelj rekao djeci da pronađu zbroj brojeva od 1 do 100 i sjeo tiho čitati novine. Međutim, za nekoliko minuta jedan dječak je rekao da je riješio problem. Bio je to 9-godišnji Karl Friedrich Gauss, kasnije jedan od najveći matematičari u povijesti.

Ideja malog Gaussa bila je sljedeća. Neka

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Zapišimo ovaj iznos obrnutim redoslijedom:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

i dodajte ove dvije formule:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Svaki član u zagradama jednak je 101, a takvih članova ima ukupno 100. Dakle

2S = 101 100 = 10100;

Ovu ideju koristimo za izvođenje formule zbroja

S = a1 + a2 + : : : + an + a n n: (3)

Korisna modifikacija formule (3) dobiva se ako u nju zamijenimo formulu n-tog člana an = a1 + (n 1)d:

2a1 + (n 1)d

Zadatak 3. Odredi zbroj svih pozitivnih troznamenkastih brojeva djeljivih s 13.

Riješenje. Troznamenkasti brojevi koji su višekratnici broja 13 tvore aritmetičku progresiju s prvim članom 104, a razlikom 13; N-ti član ove progresije ima oblik:

an = 104 + 13(n 1) = 91 + 13n:

Otkrijmo koliko članova sadrži naša progresija. Da bismo to učinili, rješavamo nejednadžbu:

6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13; n 6 69:

Dakle, u našoj progresiji ima 69 članova. Pomoću formule (4) nalazimo traženi iznos:

S = 2 104 + 68 13 69 = 37674: 2



 


Čitati:



Tumačenje tarot karte đavo u odnosima Što znači laso đavo

Tumačenje tarot karte đavo u odnosima Što znači laso đavo

Tarot karte vam omogućuju da saznate ne samo odgovor na uzbudljivo pitanje. Također mogu predložiti pravo rješenje u teškoj situaciji. Dovoljno za učenje...

Ekološki scenariji za ljetni kamp Kvizovi za ljetni kamp

Ekološki scenariji za ljetni kamp Kvizovi za ljetni kamp

Kviz o bajkama 1. Tko je poslao ovaj telegram: “Spasi me! Pomozite! Pojeo nas je Sivi Vuk! Kako se zove ova bajka? (Djeca, "Vuk i...

Kolektivni projekt "Rad je osnova života"

Kolektivni projekt

Prema definiciji A. Marshalla, rad je „svaki mentalni i fizički napor poduzet djelomično ili u cijelosti s ciljem postizanja nekog...

DIY hranilica za ptice: izbor ideja Hranilica za ptice iz kutije za cipele

DIY hranilica za ptice: izbor ideja Hranilica za ptice iz kutije za cipele

Napraviti vlastitu hranilicu za ptice nije teško. Zimi su ptice u velikoj opasnosti, treba ih hraniti. Zato ljudi...

feed-image RSS