Главная - Сам Смогу сделать ремонт
Все о синтетических волокнах. Натуральные и синтетические волокна. Свойства искусственных волокон

это химические волокна, получаемые из синтетических полимеров. Синтетические волокна формуют либо из расплава полимера (полиамида, полиэфира, полиолефина), либо из раствора полимера (полиакрилонитрила, поливинилхлорида, поливинилового спирта) по сухому или мокрому методу.

Их выпускают в виде текстильных и кордных нитей, моноволокна, а также штапельного волокна. Разнообразие свойств исходных синтетических полимеров позволяет получать синтетические волокна с различными свойствами, тогда как возможности варьировать свойства искусственных волокон очень ограничены, поскольку их формуют практически из одного полимера (целлюлозы или её производных). Синтетические волокна характеризуются высокой прочностью, водостойкостью, износостойкостью, эластичностью и устойчивостью к действию химических реагентов.

Производство синтетических волокон развивается более быстрыми темпами, чем производство искусственных волокон. Это объясняется доступностью исходного сырья и быстрым развитием сырьевой базы, меньшей трудоёмкостью производственных процессов и особенно разнообразием свойств и высоким качеством синтетических волокон. Поэтому синтетические волокна постепенно вытесняют не только натуральные, но и искусственные волокна в производстве некоторых товаров народного потребления и технических изделий.

Лит.: Технология производства химических волокон. М., 1965.

Важнейшими группами синтетических волокон, встречающихся в текстильной промышленности, являются полиамиды, полиэфиры, полиакрилы, полипропены и хлористые волокна. Общими для синтетических волокон свойствами являются легкость, прочность, износостойкость. Их можно под действием тепла курчавить, сжимать и придавать им нужную устойчивую форму. Синтетические волокна очень мало впитывают влаги или вообще не впитывают, поэтому изделия из них легко стираются и быстро сохнут. Из-за плохой способности впитывать влагу они не так удобны при носки на теле, как натуральные волокна.

Прототипом процесса получения химических нитей послужил процесс образования шелкопрядом нити при завивке кокона. Существовавшая в 80-х 19 столетия гипотеза о том, что шелкопряд выдавливает волокнообразующую жидкость через шелкоотделительные железы и таким образом прядет нить, легла в основу технологических процессов формирования химических нитей.

Литературные источники этой статьи:
Большая Советская Энциклопедия;
Калмыкова Е.А., Лобацкая О.В. Материаловедение швейного производства: Учеб. Пособие,Мн.: Выш. шк., 2001412с.
Мальцева Е.П., Материаловедение швейного производства, - 2-е изд., перераб. и доп.М.: Легкая и пищевая промышленность, 1983,232.
Бузов Б.А., Модестова Т.А., Алыменкова Н.Д. Материаловедение швейного производства: Учеб. для вузов,4-е изд., перераб и доп.,М., Легпромбытиздат, 1986 – 424.

Из истории синтетики

Производство синтетических волокон началось с выпуска в 1932 году поливинилхлоридного волокна (Германия). В 1940 году в промышленном масштабе выпущено наиболее известное синтетическое волокно – полиамидное (США). Производство в промышленном масштабе полиэфирных, полиакрилонитрильных и полиолефиновых синтетических волокон осуществлено в 1954-60 годах.

С 1931 года кроме бутадиенового каучука, синтетических волокон и полимеров еще не было, а для изготовления волокон использовались единственно известные тогда материалы на основе природного полимера - целлюлозы.

Революционные изменения наступили в начале 60-х годов, когда после объявления известной программы химизации народного хозяйства промышленность нашей страны начала осваивать производство волокон на основе поликапроамида, полиэфиров, полиэтилена, полиакрилонитрила, полипропилена и других полимеров.

В то время полимеры считали лишь дешевыми заменителями дефицитного природного сырья - хлопка, шелка, шерсти. Но вскоре пришло понимание того, что полимеры и волокна на их основе подчас лучше традиционно используемых природных материалов - они легче, прочнее, более жаростойки, способны работать в агрессивных средах. Поэтому все свои усилия химики и технологи направили на создание новых полимеров, обладающих высокими эксплуатационными характеристиками, и методов их переработки. И достигли в этом деле результатов, порой превосходящих результаты аналогичной деятельности известных зарубежных фирм.

В начале 70-х за рубежом появились поражающие воображение своей прочностью волокна кевлар (США), несколько позже - тварон (Нидерланды), технора (Япония) и другие, изготовленные из полимеров ароматического ряда, получивших собирательное название арамидов. На основе таких волокон были созданы различные композиционные материалы, которые стали успешно применять для изготовления ответственных деталей самолетов и ракет, а также шинного корда, бронежилетов, огнезащитной одежды, канатов, приводных ремней, транспортерных лент и множества других изделий.

Современная синтетика

Полиамид

Старейшим синтетическим волокном является нейлон, метод получения которого был запатентован в 1938 году в США. Благодаря прочности и стойкости к трению полиамид применяется для получения таких ниток, которые нужны, например, для штопки. Полиамид обычно используется в смеси с шерстью или полиакрилом, и его доля примерно 20-30%. В этом случае износостойкость изделия, связанного из такой смеси, в четыре раза выше, чем изделия, связанного из 100-процентной шерсти.

Торговые наименования: Nylon, Antron, Enkalon.

Полиэстер

Прочное, немнущееся, светостойкое волокно, используется главным образом при изготовления готовой одежды, драпировочных тканей и искусственной ваты.

Торговые наименования: Dacron, Diolen, Crimplene, Terylene, Trevira.

Полиакрил

Мягкое, легкое, теплое волокно, которое имеет большое значение при изготовлении пряжи для рукоделия. Изделия из полиакрила отличаются мягкостью и кажутся «шерстяными». Они теплые, поскольку пушистый материал способен связывать много воздуха. Полиакриловые волокна относительно дешевые, поэтому их много используют вместе с шерстью.

Торговые наименования: Dralon, Courtelle, Orion, Acrilan.

Полипропилен

Прежде волокно использовалось только для получения драпировочных тканей, но в последние годы область применения распространилась на производство колготок и спортивной одежды, а также пряжи для рукоделия. Полипропеновое волокно износоустойчиво, за ним хорошо ухаживать, оно не впитывает влагу и направляет выделяемую теплом влагу в верхние слои одежды, оставляя постоянно ощущение сухости. Поэтому полипропен наилучшим образом подходит для изготовления спортивной одежды.

Торговое наименование: Meraklon.

Хлористые волокна

Хлористое волокно под действием тепла сильно стягивается. Это свойство используется при изготовлении пряжи для рукоделия. В пряжу добавляют 3-5% хлористого волокна, и после прядения, когда пряжу обрабатывают горячим паром, хлористое волокно стягивается больше, чем другие волокна, и стягивает пряжу, делая ее пушистой. Их хлористого волокна изготавливают т. н. белье против ревматизма, поскольку доказано, что статический заряд волокна оказывает болеутоляющее воздействие.

Торговые наименования: Rhovyl, Thermovyl.

Из растворов или расплавов полимеров формируют:

  • мононити - одиночные нити
  • комплексные нити, состоящие из ограниченного числа элементарных нитей (от 3 до 200), используются для выработки тканей и трикотажных изделий
  • жгуты, состоящие из очень большого количества элементарных нитей (сотни тысяч), используются для получения штапельных волокон определенной длины (от 30 до 200 мм), из которых вырабатывается пряжа
  • пленочные материалы
  • штампованные изделия (детали одежды, обуви)

Получение сырья для производства синтетики

Сырье для искусственных волокон получают путем выделения из веществ, образующихся в природе: (н-р: из древесины выделяют целлюлозу, из молока – казеин и т.п.). Предварительная обработка сырья состоит в его очистке от механических примесей и иногда в химической обработке для превращения природного полимера в новое полимерное соединение.

Для получения вискозного волокна на целлюлозно-бумажных комбинатах древесину измельчают и отваривают в щелочном растворе. В результате получается серая целлюлозная масса, которая отбеливается и прессуется в листы картона. Картон отправляют на предприятия химического волокна для дальнейшей переработки и получения волокон.

Сырье для синтетических волокон получают путем реакций синтеза (полимеризации и поликонденсации) полимеров из простых веществ (мономеров) на предприятиях химической промышленности. Предварительной обработки это сырье не требует.

Полимеризация - это процесс получения полимеров путём последовательного присоединения молекул низкомолекулярного вещества (мономера) к активному центру на конце растущей цепи. Молекула мономера, входя в состав цепи, образует её мономерное зерно. Число таких звеньев в макромолекуле называется степенью полимеризации.

Поликонденсация - это процесс получения полимеров из биили полифункциональных соединений (мономеров), сопровождающийся выделением побочного низкомолекулярного вещества (воды, спирта, галогеноводорода и др.).

Прядильный раствор

Раствор или расплав полимера, из которого формируются нити, называется прядильным раствором.

При изготовлении химических волокон необходимо из исходного твердого полимера получить длинные тонкие нити с продольной ориентацией макромолекул, т.е. нужно переориентировать макромолекулы полимера. Для этого переводят исходный полимер в вязкотекучее состояние (раствор или расплав). В жидком (раствор) или размягченном (расплав) состоянии нарушается межмолекулярное взаимодействие, увеличивается расстояние между молекулами и появляется возможность их свободного перемещения относительно друг друга.

Растворение полимера осуществляют для полимеров, имеющих дешевый и доступный растворитель. Растворы используются для искусственных и некоторых синтетических (полиакрилонитрильных, поливинилспиртовых, поливинилхлоридных) волокон.

Расплавление полимера применяют для полимеров с температурой плавления ниже температуры разложения. Расплавы готовят для полиамидных, полиэфирных и полиолефиновых волокон.

Для приготовления прядильного раствора также выполняютоперации:

    Смешивание полимеров из различных партий. Выполняют для повышения однородности раствора, чтобы получить волокна равномерные по своим свойствам на всем протяжении. Смешивание возможно как после получения раствора, так и в сухом виде до растворения (расплавления) полимера.

    Фильтрация раствора. Заключается в удалении механических примесей и нерастворившихся частиц полимера путем многократного прохождения раствора через фильтры. Фильтрация необходима для предотвращения засорения фильер и улучшения качества нитей.

    Обезвоздушивание раствора. Выполняется для удаления из пузырьков воздуха, которые, попадая в отверстия фильер, обрывают образующиеся волокна. Обезвоздушивание осуществляется путем выдерживания раствора в вакууме. Расплав обезвоздушиванию не подвергается, так как в расплавленной массе воздуха практически нет.

    Введение различных добавок. Добавление небольшого количества низкомолекулярных веществ, обладающих специфическими свойствами, позволяет изменить свойства получаемых волокон. Например, для повышения степени белизны вводится оптические отбеливатели, для приобретения матовости добавляют двуокись титана. Введение добавок можно придать волокнам бактерицидные, огнестойкие и другие свойства. Добавки, не вступая в химическое взаимодействие с полимером, располагаются между его молекулами.

Формование волокон

Процесс формования волокон состоит из следующих этапов:

  • продавливание прядильного раствора через отверстия фильер,
  • затвердевание вытекающих струек,
  • наматывание полученных нитей на приемные устройства.

Прядильный раствор подаётся на прядильную машину для формования волокон. Рабочими органами, непосредственно осуществляющими процесс формования химических волокон на прядильных машинах, являются фильеры. Изготавливаются фильеры из тугоплавких металлов – платины, нержавеющей стали и др. – в форме цилиндрического колпачка или диска с отверстиями.

В зависимости от назначения и свойств формуемого волокна количество отверстий в фильере, их диаметр и форма могут быть различными (круглые, квадратные, в виде звездочек, треугольников и т.п.). При использовании фильер с отверстиями фигурного сечения получают профилированные нити с различной конфигурацией поперечного сечения или же с внутренними каналами. Для формирования бикомпонентных (из двух и более полимеров) нитей отверстия фильер разделены перегородкой на несколько (две или более) частей, к каждой из которых подаётся свой прядильный раствор.

При формировании комплексных нитей используют фильеры с небольшим числом отверстий: от 12 до 100. Сформованные из одной фильеры элементарные нити соединяются в одну комплексную (филаментную) нить и наматываются на бобину. При получении штапельных волокон применяют фильеры с количеством отверстий в несколько десятков тысяч. Собранные вместе с нескольких фильер нити образуют жгут, который затем разрезается на штапельные волокна определенной длины.

Прядильный раствор дозировано продавливается через отверстия фильер. Вытекающие струйки попадают в среду, вызывающую затвердевание полимера в виде тонких волокон. В зависимости от среды, в которой происходит затвердевание полимера, различают мокрый и сухой способы формования.

При формовании волокон из раствора полимера в нелетучем растворителе (например, вискозных, медно-аммиачных, поливинилспиртовых волокон) нити затвердевают, попадая в осадительную ванну, где происходит их химическое или физико-химическое взаимодействие со специальным раствором, содержащим различные реагенты. Это «мокрый» способ формования (Рис 2а).

Если формование проводят из раствора полимера в летучем растворителе (например, для ацетатных и триацетатных волокон), средой затвердевания является горячий воздух, в котором растворитель испаряется. Это «сухой» способ формования (Рис 2б).

При формовании из расплава полимера (например, полиамидных, полиэфирных, полиолефиновых волокон) средой, вызывающей затвердевание полимера, служит холодный воздух или инертный газ (Рис 2в).

Скорость формования зависит от толщины и назначения волокон, а также от метода формования.

Прядильный раствор в процессе превращения струек вязкой жидкости в тонкие волокна одновременно вытягивается, этот процесс называется фильерная вытяжка.

Химические волокна и нити непосредственно после формования не могут быть использованы для производства текстильных материалов. Они требуют дополнительной обработки.

В процессе формования образуется первичная структура нити. В растворе или расплаве макромолекулы имеют сильно изогнутую форму. Так как при формовании степень вытягивания нити невелика, то макромолекулы в нити расположены с малой долью распрямленности и ориентации вдоль оси нити. Для распрямления и переориентации макромолекул в осевом направлении нити выполняется пластификационная вытяжка, в результате которой ослабляются межмолекулярные связи, и образуется более упорядоченная структура нити. Вытягивание приводит к увеличению прочности и улучшению текстильных свойств нити.

Но в результате большой распрямленности макромолекул нити становятся менее растяжимыми. Такие волокна и изделия из них подвержены последующей усадке во время сухих и мокрых обработок при повышенных температурах. Поэтому возникает необходимость подвергнуть нити термофиксации тепловой обработке в натянутом состоянии. В результате термофиксации происходит частичная усадка нитей из-за приобретения макромолекулами изогнутой формы при сохранении их ориентации. Форма пряжи стабилизируется, последующая усадка, как самих волокон, так и изделий из них во время ВТО снижается.

Отделка волокон

Характер отделки зависит от условий формования и вида волокна.

  • Удаление примесей и загрязнений необходимо при получении нитей мокрым способом. Операция осуществляется путем промывки нитей в воде или различных растворах.
  • Беление нитей или волокон проводится путем обработки оптическими отбеливателями* для последующего окрашивания волокон в светлые и яркие цвета.
  • Поверхностная обработка (авиваж, аппретирование, замасливание) необходима для придания нитям способности к последующим текстильным переработкам. При такой обработке повышаются скольжение и мягкость, поверхностной склеивание элементарных нитей и уменьшается их обрывистость, снижается электризуемость и т.п.
  • Сушка нитей после мокрого формования и обработки различными жидкостями выполняется в специальных сушилках.
  • Текстильная переработка включает в себя следующие процессы:
    Скручивание и фиксация крутки - для соединения нитей и повышения их прочности.
    Перематывания – для увеличения объема паковок нитей.
    Сортировка – для оценки качества нитей.

Оптические отбеливатели

Отбеливатели оптические - это флуоресцентные отбеливатели, бесцветные или слабоокрашенные органические соединения, способные поглощать ультрафиолетовые лучи в области 300-400 ммк и преобразовывать их в синий или фиолетовый свет с длиной волны 400-500 ммк, который компенсирует недостаток синих лучей в отражаемом материалом свете. Бесцветные материалы приобретают при этом высокую степень белизны, а окрашенные - яркость и контрастность.

Синтетические ткани – гости из будущего

Легкие, прочные, долговечные и красивые синтетические материалы занимают все более прочные позиции на современном текстильном рынке. За высокие эксплуатационные характеристики и низкую себестоимость синтетические ткани называют материей будущего.

В сознании многих людей четко отложилась аксиома «Натуральные ткани – это хорошо, а синтетика – плохо». При этом большинство именует синтетикой все материалы, кроме хлопка, льна, шелка и шерсти.

Важно знать! Все ненатуральные ткани подразделяются на две большие группы – искусственные и синтетические. Первые производятся из природных компонентов – целлюлозы, белков, стекла. В основе синтетических материалов – только полимеры, не существующие в природе.

Синтетические волокна получают в процессе синтеза этилена, бензола или фенола, вырабатываемых из природного газа, нефти и каменного угля .

История синтетических тканей началась чуть больше полувека назад, когда незадолго до Второй мировой войны ведущим химиком американской фабрики «Дюпон» Уоллесом Карозерсом был синтезирован новый материал, получивший наименование «нейлон».

Это приятное на ощупь блестящее гладкое полотно тут же оказалось востребованным для производства дамских чулок. В годы войны нейлон шел на нужды армии, из него делали ткань для парашютов и маскировочную сетку.

Уже в конце 40-х – начале 50-х годов ХХ века началась эра синтетики – на текстильном рынке появились капрон, нитрон, анид, полиэстер и другие волокна.

Химическая промышленность не стоит на месте, и сейчас количество наименований синтетических тканей перевалило за сотню. Современные технологии позволяют получать материалы с уже заранее заданными свойствами.

Классификация синтетических волокон

Ткани из синтетических волокон различаются в зависимости от используемого при изготовлении сырья. Все современные материалы можно подразделить на несколько видов.

Полиамидные волокна

К этой группе относятся нейлон, капрон, анид и другие. Чаще всего используются для производства бытовых и технических изделий.

Отличаются высокой прочностью на растяжение и разрыв: капроновая нить в 3–4 раза прочнее, чем хлопковая. Стойки к истиранию, воздействию грибков и микробов.

Основные недостатки – низкая гигроскопичность, высокая электризуемость, устойчивость к солнечному свету. При длительном сроке службы желтеют и становятся ломкими.

Полиэфирные волокна

Самым ярким представителем этой группы синтетических материалов является лавсан, напоминающий по внешнему виду тонкую шерсть. В некоторых странах лавсан известен под названием терилен или дакрон.

Лавсановые волокна, добавленные к шерстяным, обеспечивают изделиям прочность и уменьшают их сминаемость.

Недостатком лавсана является его низкая гигроскопичность и относительная жесткость. К тому же ткань сильно электризуется.

Применяется для пошива костюмов, платьев, юбок, а также для производства искусственного меха.

Полиуретановые волокна

Главное достоинство этих волокон – эластичность и большая прочность на разрыв. Некоторые из них могут растягиваться, увеличиваясь в 5–7 раз.

Ткани, производимые из полиуретана – спандекс, лайкра, – прочные, упругие, не мнутся и прекрасно облегают тело.

Отрицательные стороны: плохо пропускают воздух, негигроскопичны, имеют низкую теплостойкость. Используются при производстве трикотажных полотен для пошива верхней одежды, спортивных костюмов, чулочно-носочных изделий.

Полиолефиновые волокна

Эти самые дешевые синтетические нити получают из полиэтилена и полипропилена. Основное использование – производство ковровых изделий, технических материалов.

Ткани, в состав которых входят полиолефиновые волокна, обладают повышенной прочностью, износостойкостью, не портятся при воздействии плесени или различных микроорганизмов.

Недостатками можно назвать значительную усадку при стирке, а также неустойчивость к высоким температурам.

Интересный факт! Не так давно было обнаружено основное достоинство полиолефиновых волокон – их способность отталкивать воду, оставаясь сухими. Благодаря этому волокна используются при производстве водоотталкивающих изделий – палаток, плащевой ткани и т. п.

Синтетический – не значит плохой

При всей своей «ненатуральности» синтетические ткани обладают рядом существенных плюсов:

  1. Долговечность. В отличие от «натуралов», синтетика абсолютно не подвержена гниению, воздействию плесени, грибков или различных вредителей.
  2. Стойкость цвета. Благодаря особой технологии, при которой ткань вначале отбеливается, а затем окрашивается, синтетика сохраняет устойчивость красок на долгие годы.
  3. Легкость и воздушность. Синтетические ткани весят в несколько раз меньше, чем их натуральные собратья.
  4. Несминаемость. Изделия из химических волокон не мнутся при носке и превосходно сохраняют форму. Синтетическую одежду можно развешивать на плечиках, не опасаясь вытягивания.
  5. Низкая себестоимость. Поскольку в основе производства данных тканей лежит недорогое сырье, то изделия из них доступны любым категориям покупателей.

К тому же большое многообразие синтетических тканей позволяет каждому выбрать материал исходя из своих требований и вкуса.

Без недостатков не обойтись

Хотя современная химическая промышленность и развивается семимильными шагами, пытаясь улучшать свойства синтетических материалов, все же пока от некоторых негативных сторон избавиться не удается.

Список основных недостатков синтетики:

  1. Пониженная гигроскопичность. Одежда из синтетики плохо впитывает влагу, нарушается теплообмен, тело человека потеет.
  2. Впитывание запахов. Некоторые виды тканей способны накапливать в себе неприятные запахи и распространять их вплоть до следующей стирки.
  3. Вероятность возникновения аллергии. У людей со склонностью к аллергическим реакциям после контакта с синтетикой может появиться раздражение на коже.
  4. Токсичность. К сожалению, дешевые синтетические материалы не всегда безопасны для здоровья. Не рекомендуется покупать такую одежду, в особенности для маленьких детей.

Если одежда из 100% синтетики может вызвать у покупателей вполне понятные опасения, то добавление химических волокон в натуральные ткани только улучшает их свойства, делая более безопасными и экологичными.

Важно! Материалы из смешанных волокон эластичные, не мнутся при носке, не требуют глажки, не вызывают аллергию у людей с чувствительной кожей.

Коротко о наиболее известных синтетических тканях

К самым распространенным синтетическим материям можно отнести:

  • Акрил. Сырье для этой ткани получают из природного газа. По своим свойствам акрил близок к натуральной шерсти. Хорошо сохраняет тепло, поэтому из него часто шьют верхнюю одежду. Не боится моли, не выгорает на солнце и долго сохраняет яркость цвета.

Основной недостаток акрила – образование катышков при длительной носке.

  • . Промышленный выпуск этой ткани был налажен в 80-х годах прошлого столетия. По мягкости и удобству в носке флис сравним с натуральной шерстью или мехом.

Ткань очень легкая, эластичная, воздухопроницаемая, прекрасно сохраняет тепло. Флис неприхотлив в уходе: его можно стирать в машинке и не нужно гладить. Одежда из флиса великолепно подходит для прогулок, активного отдыха, в качестве материалов для домашних халатов и пижам.

Единственным недостатком данного материала является его способность электризоваться.

  • Полиэстер. Сами по себе полиэстеровые волокна жесткие и плохо поддаются окраске. Однако в сочетании с хлопком или льном они приобретают совсем иные качества: мягкость, эластичность, устойчивость к влаге и высоким температурам.

Благодаря этим качествам полиэстеровые ткани – лучший материал для пошива штор, занавесок, домашнего текстиля – скатертей, покрывал, салфеток.

Кроме того, гладкость и шелковистость полиэстера используется при изготовлении женского нижнего белья.

  • . Ткань была разработана в Японии и впервые увидела свет в 1975 году. Волокно настолько тонкое, что моток пряжи длиной в 100 километров весит всего пять грамм.

Микрофибра хорошо стирается, быстро сохнет, долго держит форму и сохраняет цвет. Отлично впитывает влагу, поэтому чаще всего из нее делают товары для дома: салфетки, тряпочки, полотенца и т. п.

С каждым годом ассортимент синтетических тканей растет, они приобретают новые все более совершенные характеристики, стремясь удовлетворить запросы самых требовательных покупателей.

Синтетические волокна

На протяжении тысячелетий человечество использовало для своих нужд природные волокна растительного (лен, хлопок, пенька) и животного (шерсть, шелк) происхождения. Кроме того, применялись и минеральные материалы, например асбест.

Ткани, производимые из этих волокон, шли на изготовление одежды, технические нужды и т. п.

В связи с ростом населения Земли натуральных волокон стало не хватать. Именно поэтому возникла потребность в их заменителях.

Первую попытку получить искусственным путем шелк предпринял в 1855 г. француз Одемар на основе нитроцеллюлозы. В 1884 г. французский инженер Г. Шардоне разработал метод получения искусственного волокна – нитрошелка, и с 1890 г. было организовано широкое производство искусственного шелка нитратным способом с образованием нитей с помощью фильер. Особенно эффективным оказалось начавшееся в 90-х годах XIX в. производство шелка из вискозы. Впоследствии этот способ получил наиболее широкое распространение, и ныне вискозный шелк составляет примерно 85 % мирового производства искусственного волокна. В 1900 г. мировое производство вискозного шелка составило 985 тонн, в 1930 г. – около 200 тыс. тонн, а в 1950 г. производство вискозного шелка достигло почти 1600 тыс. тонн.

В 1920-х годах было освоено производство ацетатного шелка (из ацетилцеллюлозы). По внешнему виду ацетатный шелк почти неотличим от натурального. Он малогигроскопичен и, в отличие от вискозного шелка, не мнется. Ацетатный шелк широко применяется в электротехнике как изоляционный материал. Позже был открыт способ получения ацетатного волокна чрезвычайно большой прочности (шнур сечением в 1 см 2 выдерживает нагрузку в 10 тонн).

На основе успехов химии на протяжении XX в. в СССР, Англии, Франции, Италии, США, Японии и других странах была создана мощная промышленность искусственного волокна.

Накануне Первой мировой войны во всем мире производилось всего 11 тыс. тонн искусственного волокна, а спустя 25 лет производство искусственного волокна оттеснило производство натурального шелка. Если в 1927 г. производство вискозного и ацетатного шелка составляло около 60 тыс. тонн, то в 1956 г. мировая продукция искусственных – вискозных и ацетатных – волокон превысила 2 млн тонн.

Разница между натуральным, искусственным и синтетическим волокнами состоит в следующем. Природное (натуральное) волокно полностью создано самой природой, искусственное волокно сделано руками человека, а синтетическое – создано человеком на химических заводах. При синтезе синтетических волокон из более простых веществ получают более сложные высокомолекулярные соединения, тогда как искусственные материалы образуются за счет разрушения значительно более сложных молекул (например, молекул клетчатки при получении метилового спирта путем сухой перегонки древесины).

В 1935 г. американским химиком У. Карозерсом был открыт нейлон – первое синтетическое волокно. Карозерс сначала работал бухгалтером, но позже заинтересовался химией и поступил в Иллинойский университет. Уже на третьем курсе ему поручили читать лекции по химии. В 1926 г. Гарвардский университет избирает его профессором органической химии.

В 1928 г. в судьбе Карозерса произошел резкий поворот. Крупнейший химический концерн «Дюпон де Немур» пригласил его возглавить лабораторию органической химии. Ему создали идеальные условия: большой штат сотрудников, самое современное оборудование, свободу в выборе тематики исследований.

Это было связано с тем, что за год до этого концерн принял стратегию на теоретические исследования, полагая, что они в конце концов принесут значительную практическую пользу, а следовательно, и прибыль.

Так и случилось. Лаборатория Карозерса, исследуя полимеризацию мономеров, после трех лет упорной работы добивается выдающегося успеха – получает полимер хлоропрена. На основе его в 1934 г. концерн «Дюпон» начал промышленное производство одного из первых видов синтетического каучука – полихлоропрена (неопрена), по своим качествам способного с успехом заменить дефицитный натуральный каучук.

Однако главной целью своих исследований Карозерс считал получение такого синтетического вещества, которое можно было бы превращать в волокно. Используя метод поликомпенсации, которым он занимался еще в Гарвардском университете, Карозерс в 1930 г. получил в результате взаимодействия этиленгликоля и себациновой кислоты полиэфир, который, как выяснилось позже, легко вытягивался в волокно. Это было уже большим достижением. Однако практического применения это вещество не могло иметь, так как легко размягчалось от горячей воды.

Дальнейшие многочисленные попытки получить коммерческое синтетическое волокно оказались безуспешными, и Карозерс решил прекратить работу в этом направлении. Руководство концерна согласилось закрыть программу. Однако заведующий химическим отделом воспротивился такому исходу дела. С большим трудом он убедил Карозерса продолжить исследования.

Заново обдумывая результаты своей работы в поисках новых путей ее продолжения, Карозерс обратил внимание на недавно синтезированные полимеры, содержащие в молекуле амидные группы – полиамиды. Этот выбор оказался исключительно плодотворным. Опыты показали, что некоторые полиамидные смолы, протиснутые через фильеру, сделанную из тонкого медицинского шприца, образуют нити, из которых можно изготовлять волокно. Применение новых смол казалось весьма многообещающим.

После новых экспериментов Карозерс и его помощники 28 февраля 1935 г. получили полиамид, из которого можно было вырабатывать прочное, упругое, эластичное, водоустойчивое волокно. Эта смола, выделенная в результате реакции гексаметилендиамина с адипиновой кислотой, с последующим нагреванием в вакууме полученной соли (АГ), была названа «полимер 66», так как исходные продукты содержали по 6 атомов углерода. Поскольку над созданием этого полимера трудились одновременно в Нью-Йорке и Лондоне, то волокно из него получило название «нейлон» – по начальным буквам этих городов. Специалисты-текстильщики признали его пригодным для коммерческого производства пряжи.

В течение двух следующих лет ученые и инженеры «Дюпона» разрабатывали в лабораторных условиях технологические процессы производства промежуточных продуктов полимера и нейлоновой пряжи и конструировали опытно-заводскую химическую установку.

16 февраля 1937 г. нейлон был запатентован. После многих опытных циклов в апреле 1937 г. было получено волокно для экспериментальной партии чулок. В июле 1938 г. было завершено строительство опытного предприятия.

29 апреля 1937 г., через три дня после того как Карозерсу исполнился 41 год, он ушел из жизни, приняв цианистый калий. Выдающегося исследователя преследовала навязчивая идея, что он не состоялся как ученый.

Разработка нейлона обошлась в 6 млн долларов, дороже, чем любой другой продукт общественного пользования. (Для сравнения: на разработку телевидения США потратили 2,5 млн долларов.)

Внешне нейлон напоминает натуральный шелк и приближается к нему по химическому строению. Однако по своей механической прочности нейлоновое волокно превосходит вискозный шелк примерно в три раза, а натуральный – почти в два раза.

Компания «Дюпон» длительное время строго охраняла секрет производственного процесса нейлона. И даже сама изготавливала необходимое для этого оборудование. Как сотрудники, так и оптовые продавцы товара обязательно давали подписку о неразглашении информации, касающейся «нейлоновых секретов».

Первым коммерческим изделием, поступившим на рынок, стали зубные щетки с нейлоновой щетиной. Их выпуск начался в 1938 году. Нейлоновые чулки были продемонстрированы в октябре 1939 г., а с начала 1940-го в г. Вилмингтон стало производиться нейлоновое волокно, которое трикотажные фабрики покупали для изготовления чулок. Благодаря взаимной договоренности торговых фирм чулки конкурирующих между собой производителей появились на рынке в один день: 15 мая 1940 года.

Массовое производство изделий из нейлона началось только после Второй мировой войны, в 1946 году. И хотя с тех пор появились многие другие полиамиды (капрон, перлон и др.), нейлон все еще широко применяется в текстильной промышленности.

Если в 1939 г. мировое производство нейлона составило лишь 180 тонн, то в 1953 г. оно достигло 110 тыс. тонн.

Из нейлоновой пластмассы в 50-е годы прошлого века изготавливали судовые лопастные винты для судов малого и среднего тоннажа.

В 40–50-е годы XX в. появились и другие синтетические полиамидные волокна. Так, в СССР был наиболее распространен капрон. В качестве исходного сырья для его производства используется дешевый фенол, вырабатываемый из каменноугольной смолы. Из 1 т фенола можно получить около 0,5 т смолы, а из нее изготовить капрон в количестве, достаточном для изготовления 20–25 тыс. пар чулок. Капрон получают и из продуктов переработки нефти.

В 1953 г. впервые в мире в СССР в опытно-промышленном масштабе была осуществлена реакция полимеризации между этиленом и четыреххлористым углеродом и получен исходный продукт для промышленного производства волокна энант. Схема его производства была разработана коллективом ученых под руководством А. Н. Несмеянова.

По основным физико-механическим свойствам энант не только не уступал другим известным полиамидным волокнам, но и во многом превосходил капрон и нейлон.

В 50–60-е гг. прошлого века началось производство полиэфирных, полиакрилонитрильных синтетических волокон.

Полиэфирные волокна формируются из расплава полиэтилен-терефталата. Они обладают превосходной термостойкостью, сохраняя 50 % прочности при температуре 180 °C, огнестойки и атмосферостойкие. Устойчивы к действию растворителей и вредителей: моли, плесени и т. п. Нить из полиэфирных волокон используется для изготовления транспортерных лент, приводных ремней, канатов, парусов, рыболовных сетей, шлангов, в качестве основы для шин. Моноволокно применяется для производства сетки для бумагоделательных машин, струн для ракеток. В текстильной промышленности нить из полиэфирных волокон идет на изготовление трикотажа, тканей и т. п. К полиэфирным волокнам относится лавсан.

Полиакрилонитрильные волокна по своим свойствам близки к шерсти. Они устойчивы к действию кислот, щелочей, растворителей. Их применяют для изготовления верхнего трикотажа, ковров, тканей для костюмов. В смеси с хлопком и вискозным волокном полиакрилонитрильные волокна используют для изготовления белья, гардин, брезентов. В СССР эти волокна выпускались под торговым названием нитрон.

Многие синтетические волокна получают путем продавливания расплава или раствора полимера через фильеры диаметром от 50 до 500 микрометров в камеру с холодным воздухом, где происходит отвердение и превращение струек в волокно. Непрерывно образующуюся нить наматывают на бобину.

Отвердение ацетатных волокон происходит в среде горячего воздуха для испарения растворителя, а отвердение вискозных волокон – в осадительных ваннах со специальными жидкими реагентами. Вытяжка волокон на бобинах при формировании применяется для того, чтобы цепные полимерные молекулы приняли более четкий порядок.

На свойства волокон влияют разными методами: изменением скорости выдавливания, состава и концентрации веществ в ванне, меняя температуру прядильного раствора, ванны или воздушной камеры, варьируя размеры отверстия фильер.

Важной характеристикой прочностных свойств волокна является разрывная длина, при которой волокно разрывается под действием собственной тяжести.

У природного хлопкового волокна она изменяется от 5 до 10 км, ацетатного шелка – от 12 до 14, натурального – от 30 до 35, вискозного волокна – до 50 км. Волокна из полиэфиров и полиамидов имеют большую прочность. Так у нейлона разрывная длина доходит до 80 км.

Синтетические волокна потеснили натуральные во многих областях. Общий объем их производства практически сравнялся.

Данный текст является ознакомительным фрагментом.

Введение………………………………………….…………………………3

1. Характеристики синтетических волокон………………………..…….3

2. Сырье для производства синтетических волокон……………………..4

3. Производство синтетических волокон…………………………………5

4. Применение синтетических волокон……………………….…………11

Список литературы……………………………………………………….12

Введение

Синтетические волокна изготовляют из полимерных материалов, полученных синтезом простых веществ (этилена, бензола, фенола, пропилена и др.), которые вырабатывают из нефтяных газов, нефти и каменноугольной смолы. Синтетические полимерные материалы, предназначенные для производства волокон, изготовляют на основе полимеризационных и поликонденсационных смол. В зависимости от условий проведения процессов полимеризации и поликонденсации получают молекулы полимеров, различные не только по величине, но и по строению. Современные методы синтеза высокомолекулярных соединений позволяют путем использования различных мономеров и изменения условий синтеза получать соединения любого состава и, следовательно, изменять свойства полимера и получаемых из него волокон в требуемом направлении. После получения исходного материала процесс производства синтетических волокон состоит из формования и процессов отделки. Формуют синтетические волокна из раствора, а также из расплава или размягченного полимера.
В настоящее время основную массу синтетических волокон используют в сочетании с природными и искусственными, что позволяет вырабатывать текстильные изделия, отвечающие требованиям потребителей.
Все синтетические волокна в зависимости от строения макромолекул делят на карбоцепные и гетероцепные. Из карбо-цепных волокон наиболее широко применяют полиакрилонитрильные, полихлорвиниловые, поливинилспиртовые, полиолефиновые, а из гетероцепных - полиамидные и полиэфирные.

Характеристики синтетических волокон

Синтетические волокна в отличие от природных и искусственных характеризуются малым влагопоглощением, поэтому изделия из них быстро высыхают. Малая чувствительность к влаге сказывается и на других свойствах этих волокон. Так, физико-механические свойства их почти не изменяются при погружении в воду. Эти волокна имеют высокую прочность как в воздушно-сухом состоянии, так и во влажном, что расширяет область их применения. Важное свойство синтетических волокон - химическая инертность. Так, капрон и анид устойчивы к действию щелочей, лавсан - к действию кислот, свойства хлорина не изменяются под воздействием кислот, щелочей, окислителей и других реагентов. Синтетические волокна устойчивы к действию бактерий, микроорганизмов, плесени и моли.
Однако синтетические волокна различаются многими свойствами. Например, капроновое волокно характеризуется высокой устойчивостью к истиранию, волокно нитрон - к действию солнечного света и атмосферным влияниям, а лавсан - очень низким остаточным удлинением. Синтетические волокна имеют ряд недостатков. Так, малое влагопоглощение значительно затрудняет крашение этих волокон, способствует накоплению электростатических зарядов на их поверхности, снижает гигиенические свойства, что ограничивает использование этих волокон для выработки бельевых и детских изделий.


2. Сырье для производства синтетических волокон

Синтетические волокна – волокна, полученные путем синтеза полимеров, состоящих из природных низкомолекулярных веществ (С, Н, О, N и др.) в результате реакции полимеризации или поликонденсации. Полимеры синтезируют из продуктов переработки нефти, газа и каменного угля (бензола, фенола, этилена, ацетилена, аммиака, синильной кислоты), которые в огромных количествах получают на химических заводах. Меняя состав исходных продуктов, можно варьировать строение и свойства синтетических полимеров и получаемых из них волокон.

Синтетические волокна имеют химический состав, подобный которому не встретить среди природных материалов.

Синтетические волокна - это химические волокна, формиру­емые из синтетических полимеров, получаемых за счет реакций полимеризации или поликонденсации из низкомолекулярных со­единений (мономеров).

Синтетические волокна по сравнению с искусственными обла­дают высокой износостойкостью, малыми сминаемостью и усадкой, -. но характеризуются невысокими гигиеническими свойствами.

Новым перспективным направлением развития синтетических волокон является разработка технологии производства сверхтонких


волокон (микроволокон). Именно с ними текстильщики связыва­ют возможность изготовления комфортных тканей и трикотажа. Применение микроволокон позволяет получить материалы с улуч­шенными гигиеническими свойствами, ткани, отличающиеся мяг­костью, эластичностью, драпируемостью, непромокаемостью, хо­рошими гигиеническими свойствами.

Полиэфирные волокна (полиэтилентерефталат - ПЭТФ, лавсан, полиэстер) - синтетические волокна, формируемые из сложных гетероцепных полимеров. Полиэтилентерефталатные во­локна формуются из расплава сложного полиэфира терефталевой кислоты и эти лен гликоля.

В общемировом производстве синтетических волокон эти во­локна занимают первое место. Лавсановое волокно характеризу­ется несминаемостью, превосходящей по этому показателю все текстильные волокна, в т. ч. и шерсть. Так, изделия из лавсановых волокон в 2-3 раза меньше сминаются, чем шерстяные. В мате­риалы на основе целлюлозы для уменьшения их сминаемости в смеску добавляют 45-55% лавсановых волокон.

Лавсановое волокно обладает очень хорошей стойкостью к све­ту и атмосферным воздействиям, уступая по этому показателю только нитроновому волокну. По этой причине его целесообразно использовать в гардинно-тюлевых, тентовых, палаточных изделиях. Лавсановое волокно - одно из термостойких волокон. Оно термо­пластично, благодаря чему изделия хорошо сохраняют эффекты плиссе и гофре. По стойкости к истиранию и изгибам лавсановое волокно несколько уступает капроновому. Волокно обладает вы­сокой прочностью, разрывная нагрузка волокна - 49-50 сН/текс, нити - 29-39 сН/текс, и хорошей деформативной способностью (относительное разрывное удлинение составляет соответственно 35^0 и 17-35%). Волокно стойко к разбавленным кислотам, ще­лочам, но разрушается при воздействии концентрированной сер­ной кислотой и горячей щелочью. Горит лавсан желтым коптящим пламенем, образуя на конце черный нерастирающийся шарик.

Однако лавсановое волокно обладает низкой гигроскопично­стью (до 1%), плохой окрашиваемостью, повышенной жесткостью,



Текстильные товары

электризуемостъю и пиллингуемостью. Причем пилли длительно сохраняются на поверхности изделий.

Полиамидные волокна (капрон, дедерон, нейлон) - вид син­тетических волокон, формуемых из расплава полиамидов - ге-тероцепных, полимеров, содержащих в основной цепи амидные группы (- СО - МН 2) и получаемых методами полимеризации (например, из е-капролактама) или поликонденсации дикарбоновых кислот (или их эфиры) и диаминов. Наибольшее распространение получили капроновые волокна, формуемые из поли-е-капроамида, являющегося продуктом полимеризации е-капроамида.

К положительным свойствам капронового волокна относят: высокие прочностные и деформационные свойства: разрывная нагрузка волокна - 32-35 сН/текс, нити - 36-44 сН/текс и удлине­ние при разрыве соответственно 60-70 и 20-45%, а также самую большую из текстильных волокон устойчивость к истиранию и из­гибам. Эти ценные свойства капронового волокна используют при введении его в смеску с другими волокнами для получения более износостойких материалов.

Так, введение 5-10% капронового волокна в шерстяную ткань в 1,5-2 раза повышает ее стойкость к истиранию. Капроновое во­локно также обладает малой сминаемостью и усадкой, устойчи­востью к действию микроорганизмов.

При температуре 170 °С капрон размягчается, а при 210 °С пла­вится. При внесении в пламя капрон плавится, загорается с трудом, горит голубоватым пламенем. Если расплавленная масса начинает капать, горение прекращается, на конце образуется оплавленный бурый шарик, ощущается запах сургуча.

Однако капроновое волокно сравнительно мало гигроскопич­но (3,5-4%), поэтому гигиенические свойства изделий из таких волокон невысокие. Кроме этого, капроновое волокно облада­ет достаточной жесткостью, сильно электризуется, неустойчиво к действию света, щелочей, минеральных кислот, имеет низкую термостойкость. На поверхности изделий, выработанных из капроновых волокон, образуются пилли, которые из-за высокой прочности волокон сохраняются в изделии и в процессе носки не исчезают.


Полиакрилонитрилъные волокна (ПАН, акрил, нитрон, ор-лон, куртель) - синтетические волокна, получаемые из полиак-рилонитрила или сополимеров, содержащих более 85% акрилнит-рила. Пол и акрил нитрил получают радикальной полимеризацией акрилонитрила. Волокна из сополимеров, содержащих 40-85% акрилонитрила, принято называть модакриловыми.

Нитрон - наиболее мягкое, шелковистое и "теплое" синтети­ческое волокно. По теплозащитным свойствам превосходит шерсть, но по стойкости к истиранию уступает даже хлопку. Прочность нитрона вдвое ниже прочности капрона, гигроскопичность очень низкая (1,5%). Нитрон отличается кис л ото стойкостью, устойчив к действию всех органических растворителей, микроорганизмов, но разрушается щелочами.

Обладает малой сминаемостью и усадкой. По светостойкости превосходит все текстильные волокна. При температуре 200-250 °С нитрон размягчается. Горит нитрон желтым коптящим пламенем со вспышками, образуя на конце твердый шарик.

Волокно хрупкое, плохо окрашивается, сильно электризуется и пиллингуется, но пилли из-за их невысоких прочностных свойств в процессе носки исчезают.

Для устранения недостатков - низкой гигроскопичности и пло­хой окрашиваемости создана широкая гамма модифицированных ПАН волокон - модакриловых волокон.

Поливипилхлоридные волокна. Вырабатывают из поливинил-хлорида - волокно ПВХ и из перхлорвинила - хлорин. Волокна отличаются высокой химической стойкостью, малой теплопровод­ностью, очень низкой гигроскопичностью (0,1-0,15%), способно­стью накапливать при трении о кожу человека электростатичес­кие заряды, имеющие лечебный эффект при болезнях суставов. Недостатками являются низкая теплостойкость (изделия можно использовать при температуре не выше 70 °С) и неустойчивость к действию света и светопогоды.

Поливинилспиртовые волокна (винол) получают из поливи­нилового спирта. Винол имеет среднюю гигроскопичность (5%), степень набухания в воде - 150-200%, обладает высокой устой-



Текстильные товары

чивостью к истиранию, уступая только полиамидным волокнам, хорошо окрашивается.

Полиолефиновые волокна получают из расплавов полиэти­лена и полипропилена. Это самые легкие текстильные волокна, изделия из них не тонут в воде. Они устойчивы к истиранию, дей­ствию химических реагентов, отличаются высокой прочностью на разрыв. Недостатками являются малая светостойкость и низкая теплостойкость.

Полиуретановые волокна (спандекс, лайкра, эластин) от­носятся к эластомерам, т. к. обладают исключительно высокой эластичностью (растяжимость до 800%). Обладают легкостью, мягкостью, устойчивостью к действию света, стирке, поту. К недо­статкам относятся низкая гигроскопичность (1-1,5%), невысокая прочность, низкая теплостойкость.

В табл. 2.1 приведены условные обозначения видов текстиль­ных волокон.

Таблица 2.1 Условные обозначения видов текстильных волокон

Условное обозначе­ние Расшифровка
Россия Великобритании Германия
Шерсть Шоо! №оо!е
ШР Альпака А1раса А1рака
\УЬ Лама Еате Ьате
\УК Верблюжья шерсть Сате! Кате!
Ш8 Кашемир СазЬтеге КазсЬггпге
Мохер МоЬа1г Мопа1г
т Ангора Ап§ога Ап§ога
\УС Вигунья Уюипа УИшгуа
то Гуанако Оиапасо СиапаЬэ
Шелк 81Ш Зен|е
СО Хлопок Сойоп Ваит\уоо1е
Лен Ьтеп Ьтапе
Ш Джут Ме 1и1е

Окончание табл. 2.1



 


Читайте:



Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

Афоризмы и цитаты про суицид

Афоризмы и цитаты про суицид

Перед вами - цитаты, афоризмы и остроумные высказывания про суицид . Это достаточно интересная и неординарная подборка самых настоящих «жемчужин...

feed-image RSS