Главная - Сам Смогу сделать ремонт
Как правильно сделать каркас для солнечной панели. Солнце как источник бесплатной энергии: делаем солнечную батарею своими руками. Монтаж корпуса солнечной батареи

Пайка солнечных панелей из отдельных фотоэлектрических элементов и электромонтаж домашней солнечной электростанции – опыт пользователей портала.

Продолжаем нашу тему, посвященную строительству домашней солнечной электростанции. С общей информацией о , о принципах расчета солнечных панелей, а также о для автономных систем электроснабжения вы можете ознакомиться, прочитав наши предыдущие статьи. Сегодня же мы расскажем об особенностях самостоятельного изготовления солнечных панелей, о последовательности подключения электрических преобразователей и о защитных устройствах, которые должны входить в комплект солнечной электростанции.

Изготовление фотоэлектрических модулей

Стандартный фотоэлектрический модуль (панель) состоит из трех основных элементов.

  1. Корпус панели.
  2. Рамка.
  3. Фотоэлектрические ячейки.

Самым простым по конструкции элементом солнечного модуля является его корпус. Как правило, его лицевая сторона представляет собой обыкновенный лист стекла, размеры которого соответствуют количеству солнечных ячеек.

Adoronkin Пользователь FORUMHOUSE

Стекло использовал обычное оконное – 3 мм (самое недорогое). Проводил тест: производительность модуля стекло ухудшает незначительно, так что не вижу особого смысла брать закалённое или просветлённое стекло.

Оконное стекло часто используется при изготовлении защитного корпуса для солнечных панелей. Если же вы сомневаетесь в прочности этого материала, то можно использовать стекло закаленное или обычное, но более толстое (5…6 мм). В этом случае можно не сомневаться, что фотоэлектрические элементы будут надежно защищены от проявлений разрушительной природной стихии (от града, например).

Тыльная сторона корпуса может быть изготовлена из влагостойкого материала, который будет защищать его от попадания пыли и влаги на солнечные элементы. Это может быть металлическая жесть, герметично прикрепленная к рамке с помощью заклепок и силикона или, опять же, обыкновенное стекло.

При этом наличие задней стенки на корпусе самодельной солнечной панели некоторые умельцы и вовсе не приветствуют.

Adoronkin

Тыльная сторона батареи открыта (для лучшего охлаждения), но покрыта акриловым лаком, смешанным с прозрачным герметиком.

Учитывая, что при нагреве панелей значительно падает их мощность, подобное решение выглядит оправданно. Ведь оно обеспечивает эффективное охлаждение полупроводниковых элементов и одновременно – качественную герметизацию солнечных ячеек. Все вместе гарантированно продлевает срок эксплуатации солнечных панелей.

Рамка

Рамки для самодельных солнечных панелей чаще всего изготавливают из стандартных алюминиевых уголков. Лучше использовать алюминий с покрытием – анодированный или крашенный. Если есть соблазн изготовить рамку из дерева или пластика, будьте готовы к тому, что через пару лет изделие может рассохнуться или вовсе развалиться под действием климатических факторов (исключение составляет оконный пластик).

BOB691774 Пользователь FORUMHOUSE

Покупаю там, где производят окна. Цена – 80 руб. за метр. Профиль полностью готов к работе, только запилить надо на 45° и под нагревом, углы склеить.

Рассмотрим самый простой вариант панели: панель с алюминиевой рамкой.

Детали алюминиевой рамки легко скрепляются между собой болтами или саморезами.

Впоследствии к алюминиевому уголку можно без особых усилий приклеить стеклянный корпус. Все, что для этого нужно – обычный силиконовый герметик.

Adoronkin

Я брал силиконовый герметик – универсальный. Достаточно 1-го тюбика. Герметик лучше брать прозрачный. Химическую безопасность герметика по отношению к фотоэлектрическим элементам подтвердила годовая эксплуатация батареи.

В итоге получится неглубокий ящик со стеклянным дном, к которому впоследствии будут приклеены фотоэлектрические элементы.

Определяя размер корпуса и рамки, следует учитывать необходимость в зазоре между соседними фотоэлектрическими ячейками, который равен – 2…5 мм.

Пайка солнечных элементов

Самым ответственным этапом сборки солнечных модулей является спаивание фотоэлектрических элементов. Солнечные ячейки изготовлены из очень хрупкого материала, поэтому и обращения они требуют соответствующего. Те люди, которые уже имели с ними дело, впредь при покупке солнечных элементов заказывают себе ячейки с некоторым запасом по количеству (10 – 15%). Например, для изготовления панели, рассчитанной на 36 элементов, они приобретают 39 – 42 ячейки.

Тонкие шинки для спаивания солнечных ячеек, более толстые шинки (с помощью которых соседние ряды панели объединяются между собой) и солнечные ячейки лучше приобретать у одного и того же продавца. Это экономит время на поиски подходящих элементов и дает определенные гарантии их совместимости.

Пайка элементов в случае их последовательного соединения производится по следующей схеме.

Отрицательный (лицевой) контакт солнечного элемента припаивается к положительному (тыльному) контакту следующей ячейки и т. д.

Так выглядит готовая панель.

Для работы понадобятся следующие инструменты и материалы:

  • Мощный паяльник 40-60 Вт (не менее).
  • Флюс (флюс-маркер) – обязательно должен быть нейтральным (в противном случае припаянные контакты быстро окислятся).
  • Шинки разной ширины.
  • Резиновые перчатки – чтобы не вымазывать солнечные элементы (особенно их лицевую часть).

Еще нам понадобится олово. Это на тот случай, если шинка будет плохо припаиваться к контактам. Ячейки, с которыми ведется работа, располагаются на твердой и ровной поверхности. Это может быть дощечка или стекло. Для того, чтобы ячейки не скользили по рабочей поверхности стола, их можно зафиксировать с помощью кусочков изоленты, проклеенных по периметру элемента. Клеить изоленту на саму ячейку (особенно на ее лицевую часть) не следует. Свободный конец шинки следует прикрепить к столу с помощью двухстороннего скотча.

Пайка элементов и сборка панелей производятся в следующем порядке: первым делом контактная канавка пластины по всей длине промазывается флюсом. Затем плоская шинка укладывается в канавку и припаивается к контакту пластины по всей ее ширине (на отрицательном полюсе элемента).

Или в трех точках (как правило – на положительном полюсе элемента).

Количество точек припаивания зависит от конструкции элемента.

Поочередно контакты припаиваются ко всем солнечным элементам. Дополнительный припой используется только в тех случаях, когда с первого раза шинку не удается надежно припаять к пластине.

В первую очередь контакты припаиваются к лицевой (отрицательной) стороне каждой ячейки, которая будет ложиться на стеклянный корпус панели.

Шинка необходимого размера подготавливается заранее. Ее длина должна соответствовать ширине 2-х соседних пластин.

Пластины с припаянными контактами выкладываются на стеклянный корпус панели лицевой стороной вниз. После этого их можно припаивать друг к другу согласно полярности («–» каждой ячейки припаивается к «+» соседней ячейки и так далее).

Для того чтобы элементы было удобнее располагать на стеклянном корпусе панели, его поверхность можно предварительно разметить.

Sliderrr Пользователь FORUMHOUSE

На стекле нанес черным фломастером точки расположения ячеек. Расположил ячейки и зафиксировал их головками, гайками и болтами.

Гайки, ключи и другие металлические предметы в данном случае использовались в качестве груза. Зафиксировать ячейки можно также с помощью прозрачного силикона, который наносится на стекло по углам каждого элемента.

Объединяя между собой соседние ряды фотоэлектрических элементов, следует использовать дополнительный припой. Это повысит надежность пайки в местах соединения проводников различной ширины.

Когда все ячейки спаяны между собой, а проводники выведены наружу сквозь алюминиевую рамку панели, можно приступать к заливке солнечных элементов.

Для этого швы между соседними элементами заливаются силиконовым герметиком.

Sliderrr

Залил силиконом зазоры между панелями (немного приплюснул и срезал сопло шприца, чтобы обеспечить эстетичность шва и хороший контакт силикона со стеклом). Когда подсохло, промазал по периметру каждую панельку ещё раз. После того, как высох герметик, два раза покрыл ячейки яхтовым лаком. В дальнейшем попробую лак изоляционный.

Пользователь Mirosh вместо лака использует для заливки ячеек белый силикон, который наносит на поверхность тонким слоем при помощи шпателя. Результат – вполне удовлетворителен.

Перед окончательной сборкой каждый элемент желательно протестировать на предмет генерируемой им мощности. Сделать это можно с помощью мультиметра. Если существенных различий между силой тока и напряжением, которые генерирует каждая отдельная ячейка, нет, то можно смело включать их в состав фотоэлектрического модуля.

Установка диодов Шоттки

В конструкции солнечных панелей зачастую используются элементы, о которых мы ранее не упоминали. Это шунтирующие диоды Шоттки.

К их установке прибегают по двум причинам.

Во-первых, шунтирующие диоды ставят для того, чтобы в темное время суток или в пасмурную погоду солнечные панели не разряжали аккумулятор, входящий в комплект солнечной электростанции.

Alex МАП Пользователь FORUMHOUSE

В случае прямого подключения солнечных батарей к аккумулятору ночью на панелях высаживается напряжение, и они греются. Поэтому в схему примитивного солнечного контроллера, разработанного ещё лет 10 назад, был введён диод Шоттки (защита от ночного разряда АКБ).

Если к солнечным панелям подключен современный контроллер, то особой необходимости в защите от ночного разряда нет. Исправный контроллер, без помощи дополнительных устройств, вовремя отключит СБ от аккумулятора.

Во-вторых, если солнечный модуль закрывается тенью от стоящего рядом здания (или другого массивного предмета), то мощность этого элемента снижается. Последствия снижения мощности таковы: по отношению к остальным панелям, подключенным к затененному элементу последовательно, затененный элемент из источника тока превращается в резистивную нагрузку. Сопротивление затененного модуля сильно возрастает, а его температура значительно увеличивается.

Значительное снижение мощности – это самое безобидное из того, к чему может привести частичное затенение последовательно соединенной солнечной батареи. Ведь в конечном итоге затененный модуль перегреется и выйдет из строя. Это явление получило название «эффект горячего пятна».

Для того чтобы избежать этого эффекта, параллельно каждому последовательно подключенному модулю (или последовательному ряду солнечных ячеек) устанавливается диод Шоттки. Диод позволяет пустить электричество в обход затененной панели. В этом случае генерируемое напряжение снизится, но большой просадки тока удастся избежать.

Alex МАП

Большой ток от остальных панелей цепи, которые освещены, не прервётся, а пойдёт в обход затенённых частей панелей через диоды. Итоговое напряжение станет чуть меньше, но контроллеру это не важно. Если бы в панелях не были встроены диоды, тогда при малейшем затенении хотя бы кусочка 1 панели вся цепочка полностью бы переставала давать ток.

Иными словами, потери мощности будут соизмеримы с площадью затенения.

Диоды можно устанавливать параллельно всему модулю, а можно параллельно его отдельным рядам.

Здесь изображена схема, при которой каждый ряд ячеек, установленных в одном модуле, имеет свой диод. На практике же модуль чаще всего разделяется на 2 равные части.

HouzeR Пользователь FORUMHOUSE

Обычно для четырехрядной панели выводится средняя точка, то есть ячейки шунтируются пополам. Диоды ставят в клеммной коробке.

В любом случае, все модули солнечной панели следует располагать так, чтобы свет попадал на них равномерно. Тогда не придется решать проблему шунтирования отдельных модулей или даже ячеек.

Клеммные коробки для удобства располагают на тыльной стороне солнечных панелей.

Если несколько последовательно соединенных групп панелей подключается к контроллеру параллельно, то в этом случае каждая последовательная цепочка включается в общую цепь через развязывающий диод. Это позволяет избежать потерь при рассогласовании отдельных последовательных цепочек и дополнительно защитить аккумулятор от разряда в ночное время (если, вдруг, контроллер выйдет из строя).

Диоды подбираются по двум основным параметрам: по максимальной силе тока, которая будет проходить в прямом направлении (прямой ток), и по обратному напряжению. Максимальное напряжение обратного тока (Uобр.макс.) не должно привести к пробою диода. При этом рабочие характеристики диода должны немного превышать номинал панели (примерно в 1,3 – 1,5 раза).

Но здесь есть одна хитрость.

Мax94 Пользователь FORUMHOUSE

Нормальных Шоттки на большие напряжения не бывает. Это просто столбы с падением по прямому току. Так что лучше брать обычные с Urev. Max ≈ 30...100В.

Установка панелей

Как правильно крепить панели и где их устанавливать? Ответы на эти вопросы зависят от конструкции СБ и от возможностей их владельца. Единственное, о чем должны позаботиться все без исключения – это о соблюдении угла наклона. Для каждого региона этот угол будет свой, а зависит он напрямую от широты местности.

В среднем зимой угол наклона должен быть на 10°…15° выше оптимального значения, летом – на такую же величину – ниже. можно посмотреть в разделе FORUMHOUSE.

Сечение проводников

В соответствии с постулатами электротехники слишком малое сечение проводника может привести к его перегреву и даже к возгоранию. Слишком большое – это неплохо, но приведет к необоснованно завышенному удорожанию автономной системы. Поэтому задача ее создателя – найти «золотую середину».

Начнем с того, что самые толстые проводники следует устанавливать в цепи, соединяющий аккумулятор с инвертором (кстати, чем короче будет этот участок, тем лучше). Именно здесь протекают токи большой силы.

Проводники, соединяющие панели с инвертором, а также соединяющие панели между собой, можно выбирать с малым сечением. На этих участках цепи может присутствовать сравнительно высокое напряжение, но всегда будет малая сила тока.

HeliosHouse Пользователь FORUMHOUSE

16 мм² не нужно и 10 мм² не нужно. 4 – более чем достаточно. "Толстый" провод понадобится только в контуре инвертора, сечение нужно подбирать в соответствии с мощностью тока.

«Толстый» и «тонкий» – понятия растяжимые, поэтому не будем уходить от стандартов.

Учитывая, что алюминиевые проводники в домашних системах электроснабжения на сегодняшний день использовать запрещено, табличные данные распространяются на медные токопроводящие жилы с поливинилхлоридной или резиновой изоляцией.

Также, выбирая проводники, следует обращать внимание на рекомендации производителей инверторов, контроллеров и других устройств, задействованных в системе.

Защитные автоматы

В цепи солнечной электростанции, как и в цепи любого другого мощного источника электроэнергии, необходимо ставить защиту от коротких замыканий. В первую очередь автоматы или плавкие вставки должны защищать силовые кабели, идущие от аккумуляторных батарей к инвертору.

Leo2 Пользователь FORUMHOUSE

Если замкнет что в инверторе, то так и до пожара недалеко. Одно из требований к аккумуляторным системам – наличие автомата DC или плавкой вставки как минимум на одном из проводов и как можно ближе к клеммам аккумулятора.

Помимо этого, защита ставится в цепь аккумулятора и контроллера. Не стоит также пренебрегать защитой отдельных групп потребителей (потребителей постоянного тока, бытовых приборов и т. д.). Но это уже правило построения любой системы электроснабжения.

Автомат, устанавливаемый между аккумулятором и контроллером, должен иметь большой запас по току осечки. Иными словами, защита не должна сработать случайно (при увеличении нагрузки). Причина: если на ввод контроллера подается напряжение (от СБ), то в этот момент от него нельзя отключать аккумулятор. Это может привести к выходу устройства из строя.

Порядок подключения

Сборка электрической цепи происходит в следующем порядке:

  1. Подключение контроллера к аккумулятору.
  2. Подключение к контроллеру солнечных панелей.
  3. Подключение к контроллеру группы потребителей постоянного тока.
  4. Подключение инвертора к аккумуляторным батареям.
  5. Подключение нагрузки к выходу инвертора.

Подобная последовательность подключения поможет уберечь контроллер и инвертор от повреждений.

Вы можете узнать от участников нашего портала, посетив соответствующую тему. Тем, кого всерьез заинтересовала , мы рекомендуем посетить еще один полезный раздел, посвященный обмену опытом в этой области. В заключение предлагаем вашему вниманию видеосюжет, который расскажет о том, как правильно монтируются и подключаются солнечные батареи.

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности - количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей .

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать , который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% - для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока - постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Гелиостанции - это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

Углеводороды были и остаются основным источником энергии, однако все чаще человечество обращается к восполнимым и экологически безопасным ресурсам. Это стало причиной повышенного интереса к солнечным батареям и генераторам.

Однако многие не решаются на установку гелиосистемы из-за дороговизны обустройства комплекса. Удешевить продукцию можно, если взяться за ее создание самостоятельно. Сомневаетесь в собственных силах?

Мы расскажем вам, как сделать солнечную батарею своими руками, используя доступные комплектующие. В статье вы найдете всю необходимую информацию для того, чтобы выполнить расчет гелиосистемы, подобрать составляющие комплекса, осуществить сборку и установку фотопанели.

По статистике, взрослый человек ежедневно использует около десятка различных приборов, работающих от сети. Хотя электричество считается относительно экологичным источником энергии, это иллюзия, ведь при его получении используются ресурсы, загрязняющие окружающую среду.

Какие комплектующие нужны и где их купить

Основная деталь – солнечная фотопанель. Обычно кремниевые пластины покупают через интернет с доставкой из Китая или США. Это связано с высокой ценой на комплектующие отечественного производства.

Себестоимость отечественных пластин получается настолько высокой, что выгоднее заказать на Еbay. Что касается брака, то на 100 пластин лишь 2-4 непригодны к использованию. Если заказывать китайские пластины, то риски выше, т.к. качество оставляет желать лучшего. Преимущество – только в цене.

Готовая панель гораздо удобнее в использовании, но и втрое дороже, поэтому лучше все-таки озадачиться поиском комплектующих и собрать устройство своими руками

Остальные комплектующие можно купить в любом магазине электротоваров. Также потребуются оловянный припой, рама, стекло, пленка, лента и карандаш для разметки.

Галерея изображений

Солнце - это огромный и стабильный источник энергии, глупо было бы им не воспользоваться. Мощность, которую выделяет солнце, равняется 1000 Вт/м². вы не сможете задействовать всю мощность, но использовать часть ее у вас получится. При помощи фотоэлементов можно собрать до 140 Вт с каждого м².

Солнечные батареи это несколько фотоэлементов, преобразующих солнечную энергию в электроэнергию.

Что собой представляет строение солнечной батареи? Это один или несколько фотоэлементов, которые преобразуют солнечную энергию в электричество.

Электричество дорожает с каждым днем и будет продолжать расти в цене. Сейчас компании ищут новые источники энергии и пытаются их изготовить. Один из наиболее популярных таких источников - солнечные батареи. С каждым днем появляется все больше и больше зарядных устройств на основе солнечных батарей. Они используются дома, в офисе, в промышленности. Солнечную энергию используют все чаще.

Преимущества солнечной батареи

Схема строения и работы солнечной батареи.

  1. Долговечность. Такой источник энергии будет работать на вас очень долго, поэтому, приобретая солнечную батарею, вы подписываете с ней долгосрочный контракт.
  2. Простое строение. Батарею вы сможете сделать сами в домашних условиях, в этом нет ничего трудного. Ниже будет приведена инструкция, как это сделать.
  3. Маленький вес. Солнечные батареи из-за особенности своей конструкции и использующегося материала мало весят, это является огромным плюсом в некоторых отраслях.
  4. Поддаются ремонту. Такого рода батареи ломаются довольно редко, но если это и произошло, то их можно с легкость восстановить.
  5. Экологичность. Солнечные батареи безвредны для окружающей среды, они используют неисчерпаемый ресурс - солнечный свет. Кроме экологичности, у них есть еще одно преимущество - бесшумность.

Нужно знать, что такой источник энергии не идеальный, он имеет и недостатки. Во-первых, солнечные батареи довольно дорогие. Во-вторых, они занимают очень много места. В-третьих, за ними нужен тщательный уход - батареи реагируют на грязь, их необходимо всегда держать в чистоте. В-четвертых, зависимость от погоды и времени суток. Получать солнечную энергию вы сможете только при условии благоприятной погоды и в дневное время суток. В пасмурные и облачные дни мощность батарей может снизиться в 10 раз. В-пятых, низкий КПД. Он составляет примерно от 10 до 25%.

В настоящий момент на территории России существует несколько заводов, которые производят солнечные батареи, но вы можете их сделать и сами в домашних условиях. Они не будут такими мощными, как у профессиональных изготовителей, но для дома они могут подойти.

Строение солнечной батареи

Главная функция, от которой зависит строение солнечной батареи - это генерация энергии.

Основа батареи - это фотоэлементы, которые должны соединяться последовательно и параллельно. Самые популярные фотоэлементы изготавливаются из кремния. В запасах нашей планеты огромное количество кремния, но процесс его очистки очень затратный, из-за этого возникают трудности. Альтернатива кремнию - медь, селен, индий, органические фотоэлементы и др. Один солнечный элемент обладает очень маленькой мощностью, он не подходит для промышленного применения, поэтому элементы соединяют вместе, тем самым увеличивая их мощность и КПД. Полученная «связка» элементов является очень хрупкой, поэтому ее покрывают защитным слоем (стекло, пленка, пластмасса). Все вместе и образует солнечную батарею.

Виды солнечных батарей.

Главной характеристикой батареи является ее мощность. Она формируется в зависимости от тока и напряжения в батарее. За величину тока отвечает параллельность соединения пластин, а за напряжение - их последовательность. Также можно соединять не только пластины внутри батареи, но и сами батареи.

Если описать каждый уровень фотоэлемента, начиная с основы, то это будет выглядеть следующим образом:

  • металлическая подложка;
  • кремний;
  • антибликовое покрытие;
  • пластины проводника.

Батарея будет выглядеть иначе:

  • каркас;
  • фотоэлемент;
  • антибликовый лист;
  • защитное покрытие.

Сделать солнечную батарею своими руками без усилий

Вы когда-нибудь пытались соорудить самостоятельно источник энергии у себя дома? Настало время попробовать это сделать.

Чтобы солнечная батарея дома приносила вам наибольшую пользу, она должна как можно дольше находиться на солнечном свете.

Схема солнечного аккумулятора.

Также нужно использовать аккумуляторы, которые будут собирать энергию. Самодельные батареи пригодятся вам в путешествиях, когда вы будете выезжать на природу, и в быту.

Существует несколько способов смастерить солнечный источник энергии дома.

Первый способ - довольно простой. Вам понадобится приобрести модули для солнечной батареи. Их можно заказать на сайте в интернете. Модули могут быть не самого хорошего качества, для построения батареи подойдут любые. Поищите, может пара модулей найдется у вас дома.

Если вы планирует потреблять солнечную энергию только в хорошую погоду, то аккумулятор не нужен, энергетическим источником будет солнце. Будьте аккуратны при построении - модули очень хрупкие! Достаточно сильного нажатия пальцем на модуль, чтобы он треснул и отправился в мусорное ведро.

Количество модулей, которые вам понадобятся, напрямую зависит от необходимой мощности батарей и от того, где она в дальнейшем будет использоваться. Возьмите модули и спаяйте их на ровном столе в несколько одинаковых цепочек. Цепочки спаяйте между собой таким образом, чтобы у вас получился прямоугольный лист из модулей. Например: 3 ряда по 5 модулей в каждом. Сверху закрепите защитный слой, подойдет обычное стекло. Позаботьтесь и об основе батареи, используйте фанеру, пластмассовый лист или что-то другое. Скрепите полученный модульный лист вместе с основанием и защитным слоем. Для этого подойдет обычный строительный скотч. Важное правило: не прессуйте вашу батарею, сделайте так, чтобы между модулем, основанием и защитным стеклом был маленький промежуток. Далее на конструкции установите колодку и протяните туда провода.

Не следует прессовать батарею слишком сильно, нужно сделать так, чтобы между всеми элементами был небольшой промежуток.

Следующий способ тоже довольно прост и практичен. Выше описывалось, как сделать батарею дома из модулей, а сейчас будет предложен другой вариант - как сделать батарею из диодов.

Выберите диоды Д223Б, они имеют много преимуществ перед остальными. Во-первых, они дешевые, коробка на 100 штук стоит 130 рублей. Во-вторых, краска легко с них снимается. Нужно их совсем немного подержать в ацетоне, а затем протереть тряпкой, и краска сойдет. В-третьих, они компактные. Ваша конструкция будет занимать мало места и будет удобна при транспортировке. В-четвертых, у данных диодов хорошее напряжение - примерно 350 мВ на прямом солнце. Поищите у себя дома, диоды могли остаться у вас с давних времен.

Начните с очистки диодов от краски, опустите их в ацетон и оставьте на некоторое время. В данных условиях краска размокнет, и потом вы ее легко снимете. Пока займетесь подготовкой основы для батареи. Возьмите пластмассовую пластину, ширина должна быть такой, чтобы в дальнейшем вы могли проделать в этой пластине отверстия.

Возьмите лист в клетку, расчертите схему и соблюдайте масштаб. Лучше сделать 1:1. Клетка может быть 5х5 мм, 10х10 мм, больше не стоит. Схема должна иметь следующий вид: замыкающие ряды должны быть сплошными, т.е. верхний и нижний ряд просто последовательно соедините. Ряды между замыкающими будут отличаться. Ряд 2 и 3, 4 и 5, 6 и 7 и так далее будут соединяться между собой в центре, образуя квадрат размером в одну клетку. Теперь нужно вернуться к диодам, которые отмокают в ацетоне. Аккуратно достаньте их и очистите от краски. При помощи вольтметра определите, где плюс у диода. Плюсовой вывод загните, чтобы получился крюк. Проделайте в пластмассовой пластине отверстия, согласно схеме, а затем в эти отверстия проденьте диоды и припаяйте их. Батарея готова, можно устроить ей тестирование при помощи вольтметра.

Такие самодельные солнечные батареи обязательно найдут применение в быту, сделают вашу жизнь более комфортной и снизят затраты. Изготовить солнечную батарею дома не составляет большого труда. Сборка занимает около часа.

Как сделать солнечную батарею в домашних условиях своими руками (видео)


Как сделать солнечную батарею в домашних условиях без усилий? Изготовить солнечную батарею дома не составляет большого труда. Сборка занимает около часа.

Солнечная батарея для дома своими руками

В настоящее время очень модными и популярными являются альтернативные источники энергии, особенно у владельцев загородных коттеджей или частных домов. Но часто такое устройство стоит немалых денег и не каждый может себе позволить приобрести для дома солнечные батареи. Поэтому очень актуальным стало изготовление солнечных панелей своими руками. Так как же самому сделать солнечные батареи?

Характеристика солнечной панели

Солнечная батарея представляет собой полупроводниковую конструкцию, которая способна преобразовывать солнечное излучение в электроэнергию. Это позволяет обеспечить дом экономичным, надежным и, самое главное, бесперебойным электроснабжением. Особенно это актуально для труднодоступных районов проживания , а также там, где часто возникают перебои с электроэнергией от основного источника.

Такой альтернативный источник энергии довольно практичный, потому что в отличие от традиционного источника энергоснабжения стоит он гораздо меньше. Изготовление солнечных панелей своими руками позволяет не только оптимизировать энергопотребление, но также экономит финансы.

Преимущества

Солнечные батареи обладают следующими достоинствами:

  • простая установка за счет того, что нет необходимости прокладывать к опорам кабель;
  • выработка электроэнергии абсолютно не вредит окружающей среде;
  • отсутствуют подвижные части;
  • электричество поставляется независимо от распределительной сети;
  • минимальные затраты по времени на обслуживание системы;
  • небольшой вес батарей;
  • бесшумная работа;
  • продолжительный срок службы при минимальных расходах.

Недостатки

Несмотря на довольно весомые достоинства, есть у солнечных батарей и свои минусы, такие как:

  • трудоемкость процесса изготовления;
  • чувствительность к загрязнениям;
  • на эффективную работу солнечных панелей оказывают влияние погодные условия (солнечные или пасмурные дни);
  • для такой конструкция необходимо много места;
  • по ночам батареи не работают.

Требования, предъявляемые к солнечной батарее

Установить солнечные панели в частном доме под силу каждому. Но для того чтобы такая конструкция, созданная своими руками, приносила пользу по максимуму, следует учитывать ее особенности. К солнечной батарее предъявляются следующие требования:

Материалы, необходимые для изготовления солнечной батареи своими руками

Если нет возможности приобрести солнечные батареи, можно изготовить их своими руками. Вначале необходимо определиться с материалом , из которого они будут сделаны.

Чтобы создать панели, необходимы будут качественные фотоэлементы. Производители на сегодняшний день предлагают следующие виды устройств:

  • элементы из монокристаллического кремния имеют КПД до 13%, но в пасмурную погоду недостаточно эффективны;
  • фотоэлементы из поликристаллического кремния имеют КПД до 9%, работать могут как в солнечные, так и пасмурные дни.

Для энергоснабжения дома лучше всего использовать поликристаллы, которые доступны в наборах.

Важно знать, что все необходимые для сборки ячейки лучше всего приобретать у одного производителя , так как продукция разных марок имеет значительные различия в эффективности изделий. Это может создать дополнительные сложности при сборке, повлечь затраты в результате эксплуатации, при этом солнечная батарея будет иметь невысокую мощность.

Чтобы сделать солнечную панель из подручных средств, необходимы будут специальные проводники, предназначенные для соединения фотоэлементов.

Корпус будущей конструкции лучше всего изготавливать из алюминиевых уголков, обладающих небольшим весом. Можно также использовать такой материал, как дерево. Но из-за того, что конструкция будет все время подвержена атмосферному влиянию, срок ее эксплуатации будет снижаться.

Размеры корпуса панели зависят от количества фотоячеек.

Внешнее покрытие фотоэлементов может быть выполнено из оргстекла или прозрачного поликарбоната. Также применяют закаленное стекло, не пропускающее инфракрасные лучи.

Таким образом, для изготовления солнечной батареи своими руками потребуются следующие материалы:

  • фотоэлементы в наборе;
  • крепежные метизы;
  • медные электропровода высокой мощности;
  • силиконовые вакуумные подставки;
  • паяльное оборудование;
  • алюминиевые уголки;
  • диоды Шотке;
  • прозрачный лист из поликарбоната или плексигласа;
  • набор винтов для крепежа.

Как сделать солнечные панели своими руками?

Для того чтобы сделать панели своими руками, нужно собрать требуемые материалы. Собирается солнечная батарея для дома в такой последовательности.

Чтобы правильно сделать солнечные батареи своими руками, нужно придерживаться следующих рекомендаций:

Получить бесплатную электроэнергию в своем доме мечтает каждый человек и эта мечта осуществима. Сделав солнечные батареи своими руками, можно наслаждаться дополнительным источником электроснабжения. При этом такая конструкция не наносит никакого вреда окружающей среде , к тому же она очень надежная и недорогостоящая.

Как своими руками сделать солнечную панель для дома: характеристика батареи, преимущества и недостатки, советы


Характеристика солнечной панели, ее преимущества и недостатки. Требования, предъявляемые к солнечной батарее, материалы, необходимые для ее изготовления. Как сделать солнечные панели своими руками

Солнечные батареи своими руками

Многих людей интересует, как можно преобразовать солнечную энергию в электричество. Альтернативные источники энергии всегда занимали умы людей, и уже сегодня каждый может получить энергию солнца. В статье мы расскажем как самостоятельно изготовить панели преобразователи из подручных средств (в домашних условиях), дадим пошаговую инструкцию по сборке конструкции.

Как это работает

Устройство солнечной батареи

Альтернативный источник энергии представляет собой генератор, действующий на основе фотоэлектрического эффекта. Он позволяет преобразовывать энергию солнца в электричество. Попадая на кремниевые пластины, являющиеся составными частями солнечной батареи, кванты света вытесняют электроны с последних орбит каждого атома кремния. Таким образом, можно получить большое количество свободных электронов, которые и образуют электрический ток.

Виды солнечных батарей

Прежде чем приступить к изготовлению солнечной панели, нужно выбрать модули преобразователи, которые будут использованы: монокристаллические, поликристаллические или аморфные. Наиболее доступными являются первый и второй варианты. Для того чтобы выбрать подходящие элементы, необходимо знать их точные характеристики:

  1. Поликристаллические пластины с кремнием дают довольно низкий КПД – не более 8-9%. Однако они выгодно отличаются тем, что могут работать даже во время пасмурной погоды или облачности.
  2. Монокристаллические пластины выдают около 13-14% КПД, однако любая облачность, не говоря уже о пасмурной погоде, значительно снижают мощность батареи, собранной из таких пластин.

Структура батарей

Оба вида пластин отличаются длительным сроком службы – от 20 до 40 лет.

Приобретая кремниевые пластины для самостоятельной сборки можно брать элементы с небольшими дефектами – так называемые модули B-типа. Некоторые компоненты пластин можно заменить, собрав таким образом батарею за существенно меньшие деньги.

Проектирование солнечной батареи

Угол наклона

Планируя размещение преобразователей, нужно выбрать место ее установки так, чтобы она располагалась под наклоном, принимая лучи солнца более - менее перпендикулярно. Идеальным способом станет такое размещение батарей, чтобы можно было корректировать их угол наклона. Располагать их нужно с наиболее освещённой стороны участка, причем чем выше, тем лучше – например, на крыше дома. Однако далеко не все крыши могут выдержать вес полноценной солнечной батареи, поэтому в некоторых случаях рекомендуется установить специальные опорные подставки под преобразователи.

Необходимый угол, под которым должна располагаться батарея, можно высчитать исходя из географического положения данного участка, а также уровня солнцестояния в данной местности.

Материалы для изготовления

Набор для сборки

  • модули преобразователи B-типа,
  • алюминиевые уголки или готовые рамы для будущей батареи,
  • защитное покрытие для модулей.

Опорные рамы можно изготовить самостоятельно, используя алюминиевые рамки, или же можно приобрести уже готовые, различные по размеру.

Защитное покрытие для солнечных батарей может отсутствовать, а может представлять собой:

В принципе, все защитные покрытия могут быть использованы без больших потерь преобразуемой энергии, однако плексиглас пропускает лучи хуже всех перечисленных материалов.

Размер рамки солнечной батареи зависит от того, сколько модулей будет использовано. Планируя расположение элементов, необходимо оставить между модулями расстояние в 3-5 мм для компенсации возможного изменения размеров из-за перепадов температуры.

Готовая работа

  • Рассчитав данные и получив нужные размеры, можно приступать к монтажу рамки. Если используются готовые рамки, нужно просто подобрать модули, полностью заполняющие их. Алюминиевые уголки позволяют создать батарею любого размера.
  • Рамка из алюминиевых уголков собирается с помощью крепежных элементов. На внутреннюю часть рамки наносится силиконовый герметик. Наносить его нужно тщательно, не пропуская ни одного миллиметра – от этого напрямую зависит срок службы батареи.
  • Далее в рамку помещается панель из выбранного защитного материала. Рекомендуется с помощью метизов качественно закрепить материал на рамке. Для этого понадобятся шурупы и шуруповерт. По окончании работ стекло или его аналог необходимо очистить от пыли и мусора.
  • Приобретенные модули могут как содержать уже припаянные контакты, так и нет. В любом случае рекомендуется либо произвести пайку с нуля, то есть трижды – для большей надежности – с использованием припоя и кислоты для паяния, либо пройтись с паяльником по уже сделанной пайке.
  • Солнечная батарея может быть собрана либо сразу на подготовленной раме, либо сначала на размеченном картоне. Выложив элементы на стекло необходимым способом, нужно соединить их пайкой: с одной стороны дорожки, ведущие ток, со знаком «плюс»; с другой стороны – со знаком «минус». Контакты последних элементов должны быть выведены на широкий серебряный проводник, так называемую шину.
  • После окончания пайки необходимо проверить работу и тщательно ликвидировать все проблемы, убедиться в работоспособности панели.

Окончательным этапом работ станет герметизация изготовленных панелей с помощью специального эластичного герметика. Все соединенные модули полностью покрываются этой смесью. После ее полного высыхания нужно поставить вторую панель защитного материала, а также разместить получившийся источник альтернативной энергии под нужным углом в планируемом месте.

Полная видео инструкция по изготовлению солнечной батареи для дома:

Солнечный элемент

Основа

Установка подложки

Каркас

Окрашивание каркаса

Удаление воска

Раскладка и пайка

Собранная батарея

Крепление к основе

Блокирующий диод

Солнечные батареи своими руками - как сделать в домашних условиях (фото)


Инструкция по изготовлению солнечной батареи. Как собрать солнечную батарею.

Солнечную батарею делаем своими руками

Получение электричества из альтернативных источников питания весьма затратное занятие. Например, использование солнечной энергии при покупке готового оборудования придется потратить значительную сумму денег. Но в наше время возможно собрать солнечные батареи своими руками для дачи или частного дома из готовых фотоэлементов или других подручных материалов. И прежде, чем приступить к покупке необходимых компонентов и проектированию конструкции, необходимо понять, что такое солнечная батарея и ее принцип работы.

Солнечная батарея: что это и как работает

У людей, которые впервые сталкиваются с этой задачей, сразу возникают вопросы: «Как собрать солнечную батарею?» или «Как сделать солнечную батарею?». Но изучив устройство и принцип его работы, проблемы с реализацией данного проекта отпадают сами собой. Ведь конструкция и принцип действия просты и не должны вызвать затруднений при создании источника питания в домашних условиях.

Солнечная батарея (СБ) - это фотоэлектрические преобразователи энергии, излучаемой солнцем, в электрическую, которые соединены в виде массива элементов и заключены в защитную конструкцию . Преобразователи - полупроводниковые элементы из кремния для генерации постоянного тока . Они производятся трех видов:

  • Монокристаллический;
  • Поликристаллический;
  • Аморфный (тонкопленочный).

Принцип работы устройства основан на фотоэлектрическом эффекте . Солнечный свет, падая на фотоэлементы, выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Перемещение большого количества свободных электронов между электродами батареи вырабатывают постоянный ток. Далее, он преобразовывается в переменный ток для электрификации дома.

Принцип работы солнечной батареи

Выбор фотоэлементов

До начала проектных работ по созданию панели в домашних условиях нужно выбрать один из трех типов преобразователей солнечной энергии. Для выбора подходящих элементов нужно знать их технические характеристики:

  • Монокристаллические . КПД этих пластин 12–14%. Однако, они чувствительны к количеству попадающего света. Небольшая облачность значительно снижает количество вырабатываемого электричества. Срок службы до 30 лет.
  • Поликристаллические . Эти элементы способны выдавать КПД 7–9%. Но на них не влияет качество освещенности и они способны выдавать такое же количество тока в облачную и даже пасмурную погоду. Эксплуатационный период - 20 лет.
  • Аморфные . Изготавливаются на основе гибкого кремния. Вырабатывают КПД около 10%. Количество производимого электричества не снижается из-за качества погоды. Но дорогое и сложное производство делает их труднодоступными.

Для изготовления СБ своими силами можно приобрести преобразователи типа В (второй сорт). К ним относятся элементы с небольшими дефектами, даже при замене некоторых компонентов себестоимость батарей будет в 2–3 раза меньше рыночной, благодаря этому сэкономите свои средства.

Для обеспечения частного дома электричеством от альтернативного источника энергии лучше всего подходят первые два типа пластин.

Выбор места и проектирование

Батареи лучше располагать по принципу: чем выше, тем лучше . Отличным местом будет крыша дома, на нее не попадает тень от деревьев или других построек. В случае, если конструкция перекрытий не позволяет выдержать вес установки, то место следует выбирать на участке дачи, который больше всего воспринимает излучение от солнца.

Собранные панели необходимо располагать под таким углом, чтобы солнечные лучи максимально перпендикулярно падали на кремниевые элементы . Идеальным вариантом установки солнечных батарей будет наличие возможности корректирования всей установки по направлению за солнцем.

Изготовление батареи своими руками

Обеспечить дом или дачу электричеством в 220 В от солнечной батареи вам не удастся, т.к. размеры такой батареи будут огромны. Одна пластина генерирует электрический ток с напряжением 0,5 В. Оптимальным вариантом считается СБ с номинальным напряжением 18 В. Исходя из этого рассчитывается необходимое количество фотоэлементов для устройства.

Сборка каркаса

В первую очередь самодельная солнечная батарея нуждается в защитной рамке (корпусе) . Ее можно изготовить из алюминиевых уголков 30х30 мм или из деревянных брусков в домашних условиях. При использовании металлического профиля на одной из полок снимается напильником фаска под углом 45 градусов, а вторая полка отрезается под тем же углом. Отрезанные по нужным размерам с обработанными концами детали каркаса скручиваются при помощи угольников из того же материала. К готовой раме на силикон приклеивается защитное стекло.

Корпус из алюминиевого уголка

Спайка пластин

При спаивании элементов в домашних условиях нужно знать, что для увеличения напряжения необходимо соединять последовательно , а для увеличения силы тока - параллельно . Кремневые пластины выкладываются на стекло, оставляя между ними зазор 5 мм с каждой стороны. Этот промежуток необходим для погашения возможного температурного расширения элементов при нагреве. Преобразователи имеют две дорожки: с одной стороны «плюс », с другой - «минус ». Все детали соединяются последовательно в единую цепь. Затем проводники с последних компонентов цепи выводятся на общую шину.

Для избегания саморазряда устройства в ночное время или облачную погоду специалисты рекомендуют предусмотреть монтаж диода Шоттки 31DQ03 или аналога на контакт от «средней» точки.

После окончания паяльных работ при помощи мультиметра необходимо проверить выходное напряжение, которое должно быть 18–19 В для полноценного обеспечения частного дома электроэнергией.

Сборка элементов батареи

Сборка панели

В готовый корпус укладываются спаянные преобразователи, потом в центр каждого кремневого элемента наносится силикон , и сверху накрывается подложкой из ДВП для их фиксации. После чего конструкция закрывается крышкой, и все стыки герметизируются герметиком или силиконом . Готовая панель монтируется на держатель или каркас.

Солнечные батареи из подручных материалов

Помимо сборки СБ из купленных фотоэлементов их можно собрать из подручных материалов, которые есть у любого радиолюбителя: транзисторов, диодов и фольги.

Батарея из транзисторов

Для этих целей наиболее подходящими деталями являются транзисторы типа КТ или П . Внутри них находится довольно большой кремневый полупроводниковый элемент, необходимый для производства электричества. Подобрав необходимое количество радиодеталей, с них необходимо срезать металлическую крышку. Для этого нужно зажать его в тесках и ножовкой по металлу аккуратно произвести срез верхней части. Внутри можно увидеть пластину, которая будет служить в качестве фотоэлемента.

Транзистор для батареи со спиленной крышечкой

Все эти детали имеют три контакта: база, эмиттер и коллектор. При сборке СБ нужно выбирать коллекторный переход в связи с наибольшей разностью потенциалов.

Сборка осуществляется на ровной плоскости из любого диэлектрического материала. Спаивать транзисторы нужно в отдельные последовательные цепочки , а эти цепочки, в свою очередь соединять параллельно.

Расчет готового источника тока можно производить из характеристик радиодеталей. Один транзистор выдает напряжение 0,35 В и силу тока при КЗ в 0,25 мкА.

Батарея из диодов

Солнечная батарея из диодов Д223Б действительно может стать источником электрического тока. Эти диоды имеют наибольший вольтаж и выполнены в стеклянном корпусе, покрытом краской . Напряжение на выходе готового изделия можно определить из расчета, что один диод на солнце генерирует 350 мВ.

  1. Необходимое количество радиодеталей складываем в емкость и заливаем ацетоном или другим растворителем и оставляем на несколько часов.
  2. Затем, необходимо взять пластину нужного размера из не металлического материала и выполнить разметку под впаивание компонентов источника питания.
  3. После размокания краску можно легко соскрести.
  4. Вооружившись мультиметром, на солнце или под лампочкой определяем плюсовой контакт и загибаем его. Диоды впаиваются вертикально , т.к. в таком положении кристалл лучше всего генерирует электричество из энергии солнца. Поэтому на выходе получим максимальное напряжение, которое будет генерировать солнечная батарея.

Батарея из фольги

Помимо описанных выше двух способов источник питания можно собрать из фольги. Самодельная солнечная батарея, сделанная согласно пошаговой инструкции, описанной ниже, сможет давать электроэнергию, хотя и очень малой мощности:

  1. Для самоделки понадобится медная фольга площадью 45 кв. см. Отрезанный кусок обрабатывается в мыльном растворе для удаления жира с поверхности. Так же желательно вымыть руки, чтобы не оставлять жировые пятна.
  2. Наждаком необходимо удалить защитную оксидную пленку и любой другой вид коррозии с плоскости отреза.
  3. На горелку электрической плитки мощностью не меньше 1,1 кВт ложится лист фольги и нагревается до образования красно-оранжевых пятен. При дальнейшем нагреве образовавшиеся окислы превращаются в оксид меди. Этому свидетельствует черный цвет поверхности куска.
  4. После образования оксида нагрев необходимо продолжать в течение 30 минут , чтобы образовалась оксидная пленка достаточной толщины.
  5. Прожарка останавливается, и лист остывает вместе с печкой. При медленном охлаждении медь и оксид остывают с разной скоростью, что способствует последнему легко отслоиться.
  6. Под проточной водой удаляются остатки оксида . При этом нельзя сгибать лист и механически отдирать мелкие кусочки, чтобы не повредить тонкий слой окиси.
  7. Вырезается второй лист по размерам первого.
  8. В пластиковый бутыль объемом 2–5 литров с обрезанным горлом нужно поместить два куска фольги. Закрепить их зажимами «крокодил». Располагать их надо, чтобы они не соединялись .
  9. К обработанному куску подводится минусовая клемма, а ко второму - плюсовая.
  10. В банку заливается солевой раствор. Его уровень должен быть ниже верхней кромки электродов на 2,5 см . Для приготовления смеси 2–4 столовые ложки соли (в зависимости от объема бутылки) растворяются в небольшом количестве воды.

Батарея из фольги

Все солнечные батареи не пригодны для обеспечения дачи или частного дома помещения электричеством в виду своей маломощности. Но они способны служить источником питания для радиоприемников или зарядки мелких электроприборов.

Солнечные батареи своими руками: много способов, видео


Как сделать солнечные батареи своими руками подробно описано в статье. Рассмотрены варианты из фотоэлементов, транзисторов, диодов и даже из медной фольги.

Жизнь в стиле «Органик», столь популярная идея в последние годы, предполагает гармоничные «отношения» человека с окружающей средой. Камнем преткновения любого экологического подхода является использование полезных ископаемых для получения энергии.

Выбросы токсичных веществ и углекислоты в атмосферу, выделяющихся при сгорании ископаемого топлива, постепенно убивают планету. Поэтому концепция «зеленой энергии», которая не вредит окружающей среде, является базовой основой многих новых энерготехнологий. Одним из таких направлений получения экологически чистой энергии является технология преобразования солнечного света в электрический ток. Да, именно так, речь пойдет о солнечных батареях и возможности установки систем автономного энергообеспечения в загородном доме.

В настоящий момент энергоустановки промышленного изготовления на базе солнечных батарей, применяемые для полного энерго- и теплообеспечения коттеджа, стоят не менее 15-20 тыс. долларов при гарантированном сроке эксплуатации около 25 лет. Стоимость любой гелиевой системы в перерасчете соотношения гарантированного срока эксплуатации к средним годичным затратам на коммунальное содержание загородного дома достаточно высокая: во-первых, сегодня средняя стоимость солнечной энергии соизмерима с покупкой энергоресурсов из центральных энергосетей, во-вторых, требуются одномоментные капитальные вложения для установки системы.

Обычно принято разделять гелиосистемы, предназначенные для тепло- и энергообеспечения. В первом случае используется технология солнечного коллектора, во втором — фотоэлектрический эффект для генерации электрического тока в солнечных батареях. Мы хотим рассказать о возможности самостоятельного изготовления солнечных батарей.

Технология ручной сборки солнечной энергетической системы достаточно проста и доступна. Практически каждый россиянин может собрать индивидуальные энергосистемы с высоким КПД при сравнительно низких затратах. Это выгодно, доступно и даже модно.

Выбор солнечных элементов для солнечной панели

Приступая к изготовлению солнечной системы, нужно обратить внимание, что при индивидуальной сборке нет необходимости в одномоментной установке полнофункциональной системы, её вполне можно наращивать постепенно. Если первый опыт оказался удачным, то имеет смысл расширять функциональность гелиосистемы.

По своей сути, солнечная батарея — это генератор, работающий на основе фотоэлектрического эффекта и преобразовывающий солнечную энергию в электрическую. Кванты света, попадающие на кремниевую пластину, выбивают электрон с последней атомной орбиты кремния. Этот эффект создает достаточное количество свободных электронов, образующих поток электрического тока.

Перед сборкой батареи нужно определиться в типе фотоэлектрического преобразователя, а именно: монокристаллическом, поликристаллическом и аморфном. Для самостоятельной сборки солнечной батареи выбирают доступные в продаже монокристаллические и поликристаллические солнечные модули.


Вверху: Монокристаллические модули без припаянных контактов. Внизу: Поликристаллические модули с припаянными контактами

Панели на основе поликристаллического кремния имеют достаточно низкий КПД (7-9%), но этот недостаток нивелируется тем, что поликристаллы практически не понижают мощность при облачности и пасмурной погоде, гарантийная долговечность таких элементов составляет около 10 лет. Панели на основе монокристаллического кремния имеют КПД около 13% при сроке эксплуатации около 25 лет, но эти элементы сильно снижают мощность при отсутствии прямого солнечного света. Показатели КПД кристаллов кремния от разных производителей могут существенно варьироваться. По практике работы солнечных электростанций в полевых условиях можно говорить о сроке службы монокристаллических модулей более 30 лет, а для поликристаллических — более 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых моно- и поликристаллических элементов составляет не более 10%, когда у тонкопленочных аморфных батарей за первые два года мощность снижается на 10-40%.



Солнечные элементы Evergreen Solar Cells с контактами в наборе 300 шт.

На аукционе Еbay можно приобрести набор Solar Cells для сборки солнечной батареи из 36 и 72 солнечных элементов. Такие наборы доступны в продаже и в России. Как правило, для самостоятельной сборки солнечных батарей используются солнечные модули В-типа, то есть модули, отбракованные на промышленном производстве. Эти модули не теряют своих эксплуатационных показателей и значительно дешевле. Некоторые поставщики предлагают солнечные модули на стеклотекстолитовой плате, что предполагает высокий уровень герметичности элементов, а, соответственно, надежности.

Название Характеристики Стоимость, $
Everbright Solar Cells (Еbay) без контактов поликристаллические, набор - 36 шт., 81х150 мм, 1,75 W (0,5 В), 3А, эффективность (%) - 13
в наборе с диодами и кислотой для паяния в карандаше
$46.00
$8.95доставка
Solar Cells (США новые) монокристаллические, 156х156 мм, 81х150 мм, 4W (0,5 В), 8А, эффективность (%) - 16.7-17.9 $7.50
монокристаллические, 153х138 мм, U хол. хода - 21,6V, I корот. зам. - 94 mA, Р - 1,53W, эффективность (%) - 13 $15.50
Solar Cells на стеклотекстолитовой плате поликристаллические, 116х116 мм, U хол. хода - 7,2V, I корот. зам. - 275 mA., Р - 1,5W, эффективность (%) - 10 $14.50
$87.12
$9.25 доставка
Solar Cells (Еbay) без контактов поликристаллические, набор - 72 шт., 81х150 мм 1.8W $56.11
$9.25 доставка
Solar Cells (Еbay) с контактами монокристаллические, набор - 40 шт., 152х152 мм $87.25
$14.99 доставка

Разработка проекта гелиевой энергосистемы

Проектирование будущей гелиосистемы во многом зависит от способа её установки и монтажа. Солнечные батареи должны быть установлены под наклоном, чтобы обеспечить попадание прямых солнечных лучей под прямым углом. Производительность солнечной панели во многом зависит от интенсивности световой энергии, а также от угла падения солнечных лучей. Размещение солнечной батареи относительно солнца и угол наклона зависит от географического расположения гелиевой системы и времени года.


Сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные гелиосистемы часто снабжены датчиками, которые обеспечивают ротационное движение солнечной панели по направлению движения солнечных лучей, а также зеркалами-концентраторами солнечного света. В индивидуальных системах такие элементы значительно усложняют и удорожают систему, поэтому не применяются. Может быть применена простейшая механическая система управлением углом наклона. В зимнее время солнечные панели должны быть установлены практически вертикально, это также защищает панель от налегания снега и обледенения конструкции.



Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи устанавливаются с солнечной стороны здания, чтобы обеспечить максимально доступный объем солнечной энергии в светлое время суток. В зависимости от географического расположения и уровня солнцестояния вычисляется угол наклона батареи, который наиболее подходит для вашего местоположения.

При усложнении конструкции можно создать систему управления углом наклона солнечной батареи в зависимости от времени года и углом поворота панели в зависимости от времени суток. Энергоэффективность такой системы будет выше.

При проектировании солнечной системы, которая будет устанавливаться на крышу дома, нужно обязательно выяснить, сможет ли кровельная конструкция выдержать требуемую массу. Самостоятельная разработка проекта предполагает расчет кровельной нагрузки с учетом веса снежного покрова в зимнее время.



Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

Для изготовления солнечных панелей можно выбирать различные материалы по удельному весу и другим характеристикам. При выборе материалов конструкции необходимо учитывать максимально допустимую температуру нагрева солнечного элемента, так как температура солнечного модуля, работающего на полную мощность, не должна превышать 250С. При превышении пиковой температуры солнечный модуль резко теряет свою способность преобразовывать солнечный свет в электрический ток. Готовые гелиосистемы для индивидуального использования, как правило, не предполагают охлаждение солнечных элементов. Самостоятельное изготовление может подразумевать охлаждение гелиосистемы или управление углом наклона солнечной панели для обеспечения функциональной температуры модуля, а также выбор соответствующего прозрачного материала, поглощающего ИК-излучение.

Грамотная конструкция солнечной системы позволяет обеспечить требуемую мощность солнечной батареи, которая будет приближаться к номинальной. При расчете конструкции нужно учитывать, что элементы одного типа дают одинаковое напряжение, не зависящее от размера элементов. Причем сила тока у крупноразмерных элементов будет больше, но и батарея будет значительно тяжелее. Для изготовления солнечной системы всегда берутся солнечные модули одного размера, так как максимальный ток будет ограничен максимальным током малого элемента.

Расчеты показывают, что в среднем в ясный солнечный день можно получить с 1 м солнечной панели не более 120 Вт мощности. Такая мощность не обеспечит работу даже компьютера. Система в 10 м дает более 1 кВт энергии и может обеспечивать электроэнергией работу основных бытовых приборов: светильников, телевизора, компьютера. Для семьи из 3-4 человек необходимо около 200-300 кВт в месяц, поэтому солнечная система, установленная с южной стороны, размером 20 м может вполне обеспечить семейные энергопотребности.

Если рассматривать среднестатистические данные по электроснабжению индивидуального жилого дома, то: ежедневное энергопотребление составляет 3 кВт ч, солнечная радиация с весны по осень — 4 кВт ч/м в день, пиковая мощность потребления — 3кВт (при включении стиральной машины, холодильника, утюга и электрочайника). С целью оптимизации энергопотребления для освещения внутри дома важно использовать лампы переменного тока с низким энергопотреблением — светодиодные и люминесцентные.

Изготовление каркаса солнечной батареи

В качестве каркаса солнечной батареи используется алюминиевый уголок. На аукционе Еbay можно приобрести готовые рамы для солнечных батарей. Прозрачное покрытие выбирается по желанию, исходя из характеристик, которые необходимы для данной конструкции.



Комплект рамы со стеклом для солнечной батареи, стоимость от 33 долларов

При выборе прозрачного защитного материала можно также ориентироваться на следующие характеристики материала:

Материал Показатель преломления Свето-пропуска-ние, % Удельный вес г/см 3 Размер листа, мм Толщина, мм Стоимость, руб./м 2
Воздух 1,0002926
Стекло 1,43-2,17 92-99 3,168
Оргстекло 1,51 92-93 1,19 3040х2040 3 960.00
Поликарбонат 1,59 до 92 0,198 3050 х2050 2 600.00
Плексиглас 1,491 92 1,19 2050х1500 11 640.00
Минеральное стекло 1,52-1,9 98 1,40

Если рассматривать показатель преломления света в качестве критерия выбора материала. Самый минимальный коэффициент преломления имеет плексиглас, более дешевым вариантом прозрачного материала является отечественное оргстекло, менее подходящим — поликарбонат. В продаже имеется поликарбонат с антиконденсатным покрытием, также этот материал обеспечивает высокий уровень термозащиты. При выборе прозрачных материалов по удельному весу и способности поглощать ИК-спектр лучшим будет поликарбонат. К лучшим прозрачным материалам для солнечных батарей относятся материалы с высоким светопропусканием.

При изготовлении солнечной батареи важно выбирать прозрачные материалы, которые не пропускают ИК-спектр и, таким образом, снижают нагревание кремниевых элементов, теряющих свою мощность при температуре свыше 250С. В промышленности используются специальные стекла, имеющие оксидно-металлическое покрытие. Идеальным стеклом для солнечных панелей считается тот материал, которые пропускает весь спектр кроме ИК-диапазона.



Схема поглощения УФ и ИК излучения различными стеклами.
а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом.

Максимальное поглощение ИК-спектра обеспечит защитное силикатное стекло с оксидом железа (Fe 2 O 3), но оно имеет зеленоватый оттенок. ИК-спектр хорошо поглощает любое минеральное стекло за исключением кварцевого, оргстекло и плексиглас относятся к классу органических стекол. Минеральное стекло более устойчиво к повреждениям поверхности, но является очень дорогим и недоступным. Для солнечных батарей также применяется специальное антибликовое сверхпрозрачное стекло, пропускающее до 98% спектра. Также это стекло предполагает поглощение большей части ИК-спектра.

Оптимальный выбор оптических и спектральных характеристик стекла значительно повышает эффективность фотопреобразования солнечной панели.



Солнечная панель в корпусе из оргстекла

Во многих мастер-классах по изготовлению солнечных батарей рекомендуется использовать оргстекло для передней и задней панели. Это позволяет проводить инспекцию контактов. Однако конструкцию из оргстекла сложно назвать полностью герметичной, способной обеспечить бесперебойную эксплуатацию панели в течение 20 лет работы.

Монтаж корпуса солнечной батареи

В мастер-классе показывается изготовление солнечной панели из 36 поликристаллических солнечных элементов размером 81x150 мм. Исходя из этих размеров, можно вычислить размеры будущей солнечной батареи. При расчете размеров важно между элементами делать небольшое расстояние, которое будет учитывать изменение размеров основы под атмосферным воздействием, то есть между элементами должно быть 3-5 мм. Результирующий размер заготовки должен быть 835х690 мм при ширине уголка 35 мм.

Самодельная солнечная батарея, сделанная с использованием алюминиевого профиля, наиболее похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берется алюминиевый уголок, и выполняются заготовки рамки 835х690 мм. Чтобы можно было провести крепление метизов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносится силиконовый герметик.
Обязательно проследите, чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло нужно тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла понадобятся метизы. Нужно закрепить 4 угла рамки и по периметру разместить два метиза с длинной стороны рамки и по одному метизу с короткой стороны.
Метизы фиксируются при помощи шурупов.
Шурупы плотно затягиваются при помощи шуруповерта.
Каркас солнечной батареи готов. Перед креплением солнечных элементов, необходимо очистить стекло от пыли.

Подбор и пайка солнечных элементов

В настоящий момент на аукционе Еbay представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.



Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Так как солнечная батарея, сделанная своими руками, практически в 4 раза дешевле готовой, самостоятельное изготовление — это значительная экономия средств. На Еbay можно приобрести солнечные элементы с дефектами, но они не теряют своей функциональности, таким образом, стоимость солнечной батареи может существенно сократиться, если вы можете дополнительно пожертвовать внешним видом батареи.



Поврежденные фотоэлементы не теряют своей функциональности

При первом опыте лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Пайка контактов — это достаточно сложный процесс, сложность усугубляется хрупкостью солнечных элементов.

Если вы приобрели кремниевые элементы без проводников, то сначала необходимо провести пайку контактов.

Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники нарезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов — это достаточно кропотливая работа. Если не удастся получить нормального соединения, то необходимо повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого можно избежать, если понизить мощность следующим образом — нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Номинальная мощность нерегулируемого паяльника слишком высока для пайки кремниевых контактов.

Даже если продавцы проводников уверяют, что припой на соединителе имеется, его лучше нанести дополнительно. Во время пайки старайтесь аккуратно обращаться с элементами, при минимальном усилии они лопаются; не стоит складывать элементы пачкой, от веса нижние элементы могут треснуть.

Сборка и пайка солнечной батареи

При первой самостоятельной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).



Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.



Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При таком типе крепления сами элементы дополнительно не герметизируются, они могут свободно расширяться под действием температуры, это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.
Пайку производим по приведенной ниже электросхеме. «Плюсовые» токоведущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.
По такому принципу соединяются все солнечные элементы.
Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.
Клемма устанавливается также с внешней стороны рамы.
Так выглядит схема подключения элементов без выведенной средней точки.
Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.
На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.
Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.



Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высокоэластичную поверхность. Стоимость «Sylgard 184» на Еbay составляет около 40 долларов.



Герметик с высокой степенью эластичности «Sylgard 184»

С другой стороны, если вы не хотите нести дополнительные затраты, вполне можно использовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции. Насколько эффективна такая герметизация, сказать сложно, но использовать не- рекомендованные гидроизоляционные мастики не советуем, очень высока вероятность разрыва контактов и элементов.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».
Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.
После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.
Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.
Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Системы электроснабжения домов с использованием солнечных батарей принято называть фотоэлектрическими системами, то есть системами, обеспечивающими генерацию энергии с использованием фотоэлектрического эффекта. Для индивидуальных жилых домов рассматриваются три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.



Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.



Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10-15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:

  • суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
  • аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
  • инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24-48 В;
  • контроллер солнечного разряда 40-50 А при напряжении в 24 В;
  • источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Таким образом, для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых приведен в мастер-классе. Каждая панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования в северной части России.



 


Читайте:



Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

Афоризмы и цитаты про суицид

Афоризмы и цитаты про суицид

Перед вами - цитаты, афоризмы и остроумные высказывания про суицид . Это достаточно интересная и неординарная подборка самых настоящих «жемчужин...

feed-image RSS