Главная - Стены
Учебный проект по геометрии сфера и шар. Исследовательская работа «Загадки воздушных шаров Скачать презентацию на тему шар

Зинаида Трубина
Исследовательская работа «Загадки воздушных шаров»

МУНИЦИПАЛЬНОЕ ДОШКОЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

ДЕТСКИЙ САД № 24 МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ

УСТЬ-ЛАБИНСКИЙ РАЙОН.

Исследовательская работа тема :

«Загадки воздушных шаров

Выполнили

Менафов Шамиль

Сыроваткина Виктория.

Воспитатель

Трубина Зинаида Викторовна.

ВВЕДЕНИЕ…3

ИСТОРИЯ СОЗДАНИЯ ВОЗДУШНЫХ ШАРИКОВ… . 4

ПРАКТИЧЕСКАЯ ЧАСТЬ…7

ЗАКЛЮЧЕНИЕ…. 11

БИБЛИОГРАФИЯ…. 12

ПРИЛОЖЕНИЯ…. 13

ВВЕДЕНИЕ

Воздушные шарики . Вроде бы, такая простая и обыденная вещь. Но на самом деле это – огромный простор для физических экспериментов. На них можно поставить различные опыты и эксперименты

Задачи проекта

1. Поставить ряд экспериментов и опытов над шариками

2. Проанализировать наблюдаемые явления и сформулировать выводы

Создать мультимедийную презентацию

.Цель : сделать подборку опытов по физике, которые можно показать на воздушных шариках .

Задачи : 1. Обзор литературы и Интернета для нахождения опытов на воздушных шариках .

2. Проверить, все ли опыты выполнимы, корректировать ход выполнения опытов. Провести эти опыты.

3. Объяснить результат эксперимента

Методы исследования :

1. Изучение литературы.

2. Поиск в Интернете.

3. Проведение опытов.

4. Наблюдение.

Немного истории.

Глядя на современные воздушные шары , многие люди думают, что эта яркая, приятная игрушка стала доступной только недавно. Некоторые, более осведомленные, считают, что воздушные шары появились где-то в середине прошлого века.

А на самом деле - нет! История шаров , наполненных воздухом , началась гораздо раньше. В прежние времена, разрисованные шары, изготовленные из кишок животных, украшали площади, где проводились жертвоприношения и гулянья знатных людей Римской Империи. После воздушные шары стали применять бродячие артисты, создавая оформление шарами для притягивания новых зрителей. Тема воздушных шаров затрагивается также в русских летописях – скоморохи, выступая для князя Владимира, употребляли шарики, изготовленные из бычьих пузырей.

Первые шары современного типа создал известный английский исследователь электричества , профессор Королевского университета Майкл Фарадей. Но создавал он их не для того, чтобы раздать детям или торговать на ярмарке. Просто он экспериментировал с водородом.

Интересен способ, которым создавал Фарадей свои воздушные шары . Он вырезал два куска каучука, накладывал их друг на друга, склеивал контуру, а посредине насыпал муку, чтобы стороны не липли друг к другу.

Идея Фарадея была подхвачена пионером резиновых игрушек Томасом Ханкоком. Он создавал свои шары в форме набора «сделай сам» состоящего из бутылки с жидкой резиной и шприца. В 1847 году в Лондоне вулканизированные шары были представлены Дж. Г. Инграмом. Уже тогда он использовал их как игрушки, которые нужно продавать детям. Собственно говоря, именно они их и можно назвать прототипом современных шаров .

Лет через 80 после этого научный мешочек для водорода превратился в популярную забаву : каучуковые шары широко использовалась в Европе во время городских праздников. За счет наполнявшего их газа они могли подниматься вверх – и это очень нравилось публике, еще не избалованной ни воздушными полетами , ни другими чудесами техники.

В 1931 году Нейлом Тайлотсоном был выпущен первый современный, латексный воздушный шарик . И с тех пор воздушные шарики наконец-то смогли измениться! До этого они могли быть только круглыми – а с приходом латекса впервые появилась возможность создавать длинные, узкие шарики.

Это новшество немедленно нашло применение : дизайнеры, оформляющие праздники, стали создавать из шаров композиции в виде собак, жирафов, самолетов, шляп. Их стали применять клоуны, изобретая необыкновенные фигуры.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Эксперимент №1

1. Фокус с протыканием шарика.

ОборудованиеПонадобится надутый воздушный шарик , скотч, металлическая спица или длинное шило.

Необходимо наклеить кусочки скотча на диаметрально противоположные точки шарика. Лучше будет, если эти точки близки к "полюсам" (т. е. верхушка и самый низ) . Тогда фокус может получится даже без скотча. Смело втыкаем шило или спицу так, чтобы они проходили через заклеенные скотчем участки.

Секрет фокуса в том, что хотя дырка образуется, но скотч не даст давлению разорвать шарик. А сама спица закроет собой дырочку, не позволяя воздуху выходить из нее .

Эксперимент №2

«2. Фокус с несгораемым шариком.

Оборудование свечка, один надутый и один новый воздушный шар (этот второй шар надо наполнить водой из-под крана, а потом надуть и завязать так, чтобы вода осталась внутри).

Зажгите свечу, поднесите обычный шарик к огню - как только пламя его коснется. он лопнет.

А теперь "поколдуем" над вторым шариком и объявим, что он больше не боится огня. Поднесите его к пламени свечи. Огонь будет касаться шара, но с ним ничего не произойдет!

Этот фокус наглядно демонстрирует такое физическое понятие как "теплопроводность".

Секрет фокуса в том, что вода, находящаяся в шарике, "отбирает" все тепло свечи на себя, поэтому поверхность шарика не нагревается до опасной температуры.

Эксперимент №4

Воздушный шарик в качестве реактивного двигателя.

Оборудование шарик, машинка.

Эта наглядная модель демонстрирует принцип работы реактивных двигателей. Принцип его работы в том , что струя воздуха , вырывающаяся из шарика, после того, как его надули и отпустили, толкает машинку в противоположном направлении.

Эксперимент № 5

Надуваем шарик углекислым газом.

Оборудование пластиковая бутылка, шарик, уксус, сода, воронка.

В пластиковую бутылку через воронку насыпаем соду (мы насыпали 2 ст. ложки) и наливаем туда же немного столового уксуса (на глаз) . Многим знаком этот опыт : так обычно показывают детям вулкан - в результате бурной химической реакции получается много пены, которая "убегает" из сосуда. Но в этот раз нас интересует не пена (это одна лишь видимость, а то, что получается в ходе этой реакции - углекислый газ. Он невидим. Но мы можем поймать его, если сразу же натянем на горлышко бутылки воздушный шарик . Тогда можно будет увидеть, как выделяющийся углекислый газ надувает шар.

Секрет фокусаК соде добавляем уксус - в результате химической реакции выделяется углекислый газ, который и надувает шарик.

Эксперимент №.6

Фокус с надуванием шарика в бутылке.

Оборудование Подготовьте две пластиковые бутылки и два ненадутых воздушных шара . Все должно быть одинаковым, за исключением того, что в одной бутылке в дне надо сделать незаметное маленькое отверстие. Натяните шарики на горлышки бутылок и заправьте их внутрь. Проследите, чтобы вам досталась бутылка с дырочкой. Предложите устроить соревнование : кто первым надует шарик внутри бутылки? Итог этого соревнования предрешен - ваш партнер не сможет даже чуть-чуть надуть шар, а у вас это прекрасно получится.

Секрет фокуса в том, что для того, чтобы надувать шар в бутылке, понадобится место, куда он будет расширяться. Но вся бутылка уже заполнена воздухом ! Поэтому шарику надуваться некуда. Чтобы это получилось, надо сделать в бутылке дырочку, через которую будет выходить лишний воздух .

Эксперимент №.7

Худеющий и толстеющий шарик.

Оборудование шарик, портняжий метр, холодильник.

То, что различные тела и газы расширяются от тепла и сжимаются от холода, можно легко продемонстрировать на примере воздушного шара .

Опыт можно поставить с применением холодильника. Надуем в теплой комнате воздушный шарик . С помощью портновского метра измерием его окружность (у нас получилось 80,6 см) . После этого положим шарик в холодильник на 20-30 минут. И снова измеримего окружность. Мы обнаружили, что шарик "похудел" на почти на сантиметр (в нашем опыте он стал 79,7 см) . Это произошло из-за того, что воздух внутри шарика сжался и стал занимать меньший объем.

Эксперимент №.8

Луноход на воздушной подушке

ОборудованиеЧтобы сделать луноход нам понадобятся : CD диск, клей, крышечка от бутылки с детской водичкой, воздушный шарик .

Пока наши шарики не лопнули, мы решили их использовать для создания транспортных средств. Луноход на воздушной подушке Крышечку приклеили к диску, сверху надели шарик и надули его. Была попытка вначале надувать шарик, а потом его одевать на пробку, но это оказалось очень неудобно. Воздух вырывается из шарика и создается «прослойка» между полом и диском - воздушная подушка .

ЗАКЛЮЧЕНИЕ

На воздушных шариках можно изучать законы давления тел и газов, тепловое расширение (сжатие, давление газов, плотность жидкостей и газов, закон Архимеда; можно даже сконструировать приборы для измерения и исследования физических процессов.

Опыты, проведенные нами, доказывают, что шарик – отличное пособие для изучения физических явлений и законов. Использовать нашу работу можно в школе , в 7 классе, при изучении разделов «Первоначальные сведения о строении вещества» , «Давление твердых тел, жидкостей и газов» . Собранный исторический материал применим на занятиях кружка по физике и внеклассных мероприятиях.

Созданная на основе практической части компьютерная презентация поможет школьникам быстрее понять сущность изучаемых физических явлений, вызовет большое желание проводить эксперименты с помощью простейшего оборудования

Очевидно, что наша работа способствует формированию неподдельного интереса к изучению физики.

Изучая данную тему, мы обнаружила информацию о том, что надувать воздушные шарики не только весело, но и полезно! Оказывается, они "дарят" здоровье нашим легким. Надувание шаров положительно влияет на наше горло (даже служит средством профилактики ангины, а также помогает укрепить наш голос. Этой помощью часто пользуются певцы, так как такая тренировка помогает им правильно дышать во время пения.

Библиография

1. Большая книга экспериментов для школьников/ под ред. А. Мейяни- М.: Росмен Пресс. 2012

2. http://adalin.mospsy.ru/l_01_00/op09.shtml

3. http://class-fizika.narod.ru/o54.htm

4http://physik.ucoz.ru/publ/opyty_po_fizike/ehlektricheskie_javlenija

5. Электронный ресурс]. Режим доступа : www.demaholding.ru

6. [Электронный ресурс]. Режим доступа : www.genon.ru

7. [Электронный ресурс]. Режим доступа : www.brav-o.ru

8. [Электронный ресурс]. Режим доступа : www.vashprazdnik.com

9. [Электронный ресурс]. Режим доступа : www.aerostat.biz

10. [Электронный ресурс]. Режим доступа : www.sims.ru

11. Туркина Г. Физика на воздушных шариках . // Физика. 2008. №16.

Слайд 2

Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной точки. Эта точка называется центром, а заданное расстояние – радиусом сферы, или шара – тела, ограниченного сферой. Шар состоит из всех точек пространства, находящихся на расстоянии не более заданного от данной точки.

Слайд 3

Отрезок, соединяющий центр шара с точкой на его поверхности, называется радиусом шара. Отрезок, соединяющий две точки на поверхности шара и проходящий через центр, называется диаметром шара, а концы этого отрезка – диаметрально противоположными точками шара.

Слайд 4

Чему равно расстояние между диаметрально противоположными точками шара, если известна удаленность точки, лежащей на поверхности шара от центра? ? 18

Слайд 5

Шар можно рассматривать как тело, полученное от вращения полукруга вокруг диаметра как оси.

Слайд 6

Пусть известна площадь полукруга. Найдите радиус шара, который получается вращением этого полукруга вокруг диаметра. ? 4

Слайд 7

Теорема. Любое сечение шара плоскостью есть круг. Перпендикуляр, опущенный из центра шара на секущую плоскость, попадает в центр этого круга.

Дано: Доказать:

Слайд 8

Доказательство:

Рассмотрим прямоугольный треугольник, вершинами которого являются центр шара, основание перпендикуляра, опущенного из центра на плоскость, и произвольная точка сечения.

Слайд 9

Следствие. Если известны радиус шара и расстояние от центра шара до плоскости сечения, то радиус сечения вычисляется по теореме Пифагора.

Слайд 10

Пусть известны диаметр шара и расстояние от центра шара до секущей плоскости. Найдите радиус круга, получившегося сечения. ? 10

Слайд 11

Чем меньше расстояние от центра шара до плоскости, тем больше радиус сечения.

Слайд 12

В шаре радиуса пять проведен диаметр и два сечения, перпендикулярных этому диаметру. Одно из сечений находится на расстоянии три от центра шара, а второе – на таком же расстоянии от ближайшего конца диаметра. Отметьте то сечение, радиус которого больше. ?

Слайд 13

Задача.

На сфере радиуса R взяты три точки, являющиеся вершинами правильного треугольника со стороной а. На каком расстоянии от центра сферы расположена плоскость, проходящая через эти три точки? Дано: Найти:

Слайд 14

Рассмотрим пирамиду с вершиной в центре шара и основанием – данным треугольником. Решение:

Слайд 15

Найдем радиус описанной окружности, а затем рассмотрим один из треугольников, образованных радиусом, боковым ребром пирамиды и высотой,. Найдем высоту по теореме Пифагора. Решение:

Слайд 16

Наибольший радиус сечения получается, когда плоскость проходит через центр шара. Круг, получаемый в этом случае, называется большим кругом. Большой круг делит шар на два полушара.

Слайд 17

В шаре, радиус которого известен, проведены два больших круга. Какова длина их общего отрезка? ? 12

Слайд 18

Плоскость и прямая, касательные к сфере.

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью. Касательная плоскость перпендикулярна радиусу, проведенному в точку касания.

Слайд 19

Пусть шар, радиус которого известен, лежит на горизонтальной плоскости. В этой плоскости через точку касания и точку В проведен отрезок, длина которого известна. Чему равно расстояние от центра шара до противоположного конца отрезка? ? 6

Слайд 20

Прямая называется касательной, если она имеет со сферой ровно одну общую точку. Такая прямая перпендикулярна радиусу, проведенному в точку касания. Через любую точку сферы можно провести бесчисленное множество касательных прямых.

Слайд 21

Дан шар, радиус которого известен. Вне шара взята точка, и через нее проведена касательная к шару. Длина отрезка касательной от точки вне шара до точки касания также известна. На каком расстоянии от центра шара расположена внешняя точка? ? 4

Слайд 22

Стороны треугольника 13см, 14см и 15см. Найти расстояние от плоскости треугольника до центра шара, касающегося сторон треугольника. Радиус шара равен 5 см. Задача. Дано: Найти:

Слайд 23

Сечение сферы, проходящее через точки касания, - это вписанная в треугольник АВС окружность. Решение:

Слайд 24

Вычислим радиус окружности, вписанной в треугольник. Решение:

Слайд 25

Зная радиус сечения и радиус шара, найдем искомое расстояние. Решение:

Слайд 26

Через точку на сфере, радиус которой задан, проведен большой круг и сечение, пересекающее плоскость большого круга под углом шестьдесят градусов. Найдите площадь сечения. ? π

Слайд 27

Взаимное расположение двух шаров.

Если два шара или сферы имеют только одну общую точку, то говорят, что они касаются. Их общая касательная плоскость перпендикулярна линии центров (прямой, соединяющей центры обоих шаров).

Слайд 28

Касание шаров может быть внутренним и внешним.

Слайд 29

Расстояние между центрами двух касающихся шаров равно пяти, а радиус одного из шаров равен трем. Найдите те значения, которые может принимать радиус второго шара. ? 2 8

Слайд 30

Две сферы пересекаются по окружности. Линия центров перпендикулярна плоскости этой окружности и проходит через ее центр.

Слайд 31

Две сферы одного радиуса, равного пяти, пересекаются, а их центры находятся на расстоянии восьми. Найдите радиус окружности, по которой сферы пересекаются. Для этого необходимо рассмотреть сечение, проходящее через центры сфер. ? 3

Слайд 32

Вписанная и описанная сферы.

Сфера (шар) называется описанной около многогранника, если все вершины многогранника лежат на сфере.

Слайд 33

Какой четырехугольник может лежать в основании пирамиды, вписанной в сферу? ?

Слайд 34

Сфера называется вписанной в многогранник, в частности, в пирамиду, если она касается всех граней этого многогранника (пирамиды).

Слайд 35

В основании треугольной пирамиды лежит равнобедренный треугольник, основание и боковые стороны известны. Все боковые ребра пирамиды равны 13. Найти радиусы описанного и вписанного шаров. Задача. Дано: Найти:

Слайд 36

I этап.Нахождение радиуса вписанного шара.

1) Центр описанного шара удален от всех вершин пирамиды на одинаковое расстояние, равное радиусу шара, и в частности, от вершин треугольника АВС. Поэтому он лежит на перпендикуляре к плоскости основания этого треугольника, который восстановлен из центра описанной окружности. В данном случае этот перпендикуляр совпадает с высотой пирамиды, поскольку ее боковые ребра равны. Решение.

Символ шара-глобальность шара Земли. Символ будущего, он отличается от креста тем, что последний олицетворяет собой страдание и человеческую смерть. В Древнем Египте впервые пришли к заключению, что земля шарообразна. Это предположение послужило основой для многочисленных размышлений о бессмертии земли и возможности бессмертия населяющих ее живых организмах.


















Данная точка (О) называется центром сферы. Любой отрезок, соединяющий центр и какую-нибудь точку сферы, называется радиусом сферы (R-радиус сферы). Отрезок, соединяющий две точки сферы и проходящий через её центр, называется диаметром сферы. Очевидно, что диаметр сферы равен 2R.


Определение шара Шар – это тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки (или фигура, ограниченная сферой). Тело, ограниченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Шар








Плоскость,проходящая через центр шара,называется диаметральной плоскостью.Плоскость,проходящая через центр шара,называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом,а сечение сферы - большой окружностью.Сечение шара диаметральной плоскостью называется большим кругом,а сечение сферы - большой окружностью.














X²+y²=R²-d² Если d>R, то сфера и плоскость не имеют общих точек. R, то сфера и плоскость не имеют общих точек."> R, то сфера и плоскость не имеют общих точек."> R, то сфера и плоскость не имеют общих точек." title="x²+y²=R²-d² Если d>R, то сфера и плоскость не имеют общих точек."> title="x²+y²=R²-d² Если d>R, то сфера и плоскость не имеют общих точек.">





Касательная плоскость к сфере касательной плоскостью к сфереПлоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, точкой касания А плоскости и сферы.а их общая точка называется точкой касания А плоскости и сферы.


Теорема: Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости. Доказательство: Рассмотрим плоскость α, касающуюся сферы с центром О в точке А. Докажем, что ОА перпендикулярен α. Предположим, что это не так. Тогда радиус ОА является наклонной к плоскости α, и, следовательно расстояние от центра сферы до плоскости меньше радиуса сферы. Поэтому сфера и плоскость пересекаются по окружности. Это противоречит тому, что-касательная, т.е. сфера и плоскость имеют только одну общую точку. Полученное противоречие доказывает, что ОА перпендикулярен α.






Сфера и шар

Творческое название проекта

Многоликость "Круглых тел"

Предмет, класс

Геометрия, 11 класс

Краткая аннотация проекта

В жизни мы часто употребляем слова сфера, шар. В ходе работы над проектом Вы познакомитесь с научными понятиями сферы, шара и их элементов, в дальнейшем будете грамотно пользоваться этими терминами. Выведя уравнение сферы, Вы научитесь писать его для заданного центра и радиуса и, наоборот, по уравнению определять, является ли поверхность сферой. Достаточно интересно будет рассмотреть все возможные случаи расположения сферы и плоскости, познакомиться с определением касательной плоскости к сфере и теоремами, выражающими свойства и признак плоскости, касательной к сфере. Познакомитесь с формулой для вычисления площади сферы. И, конечно, Вы научитесь решать задачи по данной теме как обязательного, так и продвинутого уровня.

На протяжении веков человечество не переставало пополнять свои научные знания в той или иной области наук. Множество ученых геометров, да и простых людей, интересовались такой фигурой как шар и его “оболочкой”, носящей название сфера. Многие реальные объекты в физике, астрономии, биологии и других естественных науках имеют форму шара. Поэтому вопросам изучения свойств шара отводилась в различные исторические эпохи и отводится в наше время значительная роль.

Желаю успеха!

Рефлексивный блог

Ребята, пишите свои отзывы после каждого этапа проекта в рефлексивном блоге

Направляющие вопросы

Основополагающий вопрос

Как исследовать законы и закономерности Вселенной?

Проблемные вопросы

  • Какова взаимосвязь геометрии с другими областями наук?
  • С чем ассоциируются круглые тела?
  • Почему многие ученые геометры интересовались такой фигурой как шар и его “оболочкой”, носящей название сфера?

Учебные вопросы

  1. Дайте определения сферы и шара. Что у них общего и в чем отличие?
  2. Как могут быть получены сфера и шар?
  3. Как записать уравнение сферы, если заданы ее центр и радиус?
  4. Сколько возможных случаев взаимного расположение сферы и плоскости? От чего оно зависит? Сечения сферы и шара.
  5. Какая плоскость называется плоскостью, касательной к сфере?В чем заключается её основное свойство? Возможно ли определить, является ли заданная плоскость касательной к сфере?
  6. Формула площади сферы.
  7. Взаимное расположение сферы и прямой.
  8. Эллипс, гипербола, парабола как сечения конуса.
  9. Сфера, вписанная в многогранник, сфера, описанная около многогранника.

План проведения проекта

Визитная карточка проекта

Публикация учителя. Буклет для родителей

Презентация учителя для выявления представлений и интересов учащихся

Рабочие группы и вопросы для исследования

Группа “Математики” Белякова Мария, Кобелева Алена, Морозова Юлия

Обобщить материал по теме “Сфера и шар”, изученный в школьном курсе геометрии;

Найти и сравнить все определения сферы и шара;

Подготовить обобщающие таблицы, сборник задач.

Группа “Географы” Кононыхина Алена, Прокофьева Альбина, Самородов Максим

Найти первые упоминания о Земле как шарообразной поверхности;

Найти материалы, указывающие на эволюционное развитие планеты Земля.

Группа “Астрономы” Еремин Владислав, Кузьмин Евгений, Павлочев Илья

Найти связи геометрии и астрономии;

Найти доказательства шарообразности Земли с точки зрения астрономии;

Найти материалы о строении Солнечной системы.

Группа “Философы” Гоголева Анастасия, Пукосенко Виктория, Чернова Юлия

Найти материал, связывающий геометрическое тело – сферу с понятиями философии;

Определить виды сфер с точки зрения философии.

Группа “Искусствоведы” Жаксаликова Надежда, Кабанина Юлия, Чемис Валентина

Найти картины, гравюры, на которых изображена сфера.

Группа “Ученый совет” Астанаева Марина, Балаева Ирина, Ростунова Юлия

Провести анализ заданий ЕГЭ. Выделить задания по данной теме. Подобрать задания для итогового повторения.

Предлагаемые темы ученических проектов

«Взаимное расположение сферы и плоскости»

« Шар и сфера»

«Шар – символ Бога»

«Гармония шара»

«Музыка сферы»

«Сфера и шар в архитектуре»

« Сфера и шар в окружающем нас мире»

Адреса электронной почты участников проекта

Прошу всех участников проекта после завершения регистрации на почтовом сервисе Gmail вписать свои данные в таблицу

Некоторые материалы теоретического семинара

Результаты проектной деятельности учащихся

Материалы по формирующему и итоговому оцениванию

Материалы по сопровождению и поддержке проектной деятельности

Полезные ресурсы

Теоретический материал

Сфера. Словари и энциклопедии на Академике Шар. Словари и энциклопедии на Академике Модели уроков. Сфера и шар. Касания и сечения. Части шара и сферы Сфера и шар. Сечения сферы и шара плоскостью. Касательная плоскость к сфере. Шар и сфера. Реферат. Сфера

Казакова Дарья, Емельянова Ксения, Сидорин Андрей

Актуальность темы: каждый маленький ребёнок очень любит, когда родители ему покупают воздушные шарики. Воздушные шарики разнообразные. Они могут разного размера и цвета, одни могут улететь, если его отпустить, а другие упадут на землю. Но не каждый из детей знает, когда появились шары, из чего их делают.

Гипотеза: любой воздушный шар сделан из такого материала, которой при попаданий в него каких- либо веществ увеличивается в размерах.Цели:Узнать историю появления воздушного шарика. Задачи исследования:- собрать информацию кто изобрёл первый шар;- из чего делают воздушные шары; - какие бывают воздушные шары; - для чего используют воздушные шары.- при каких условиях шары могут изменять свой размер.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Работу выполнили: учащихся 4 «В» класса ГБОУ СОШ № 2017 Емельянова Ксения, Казакова Дарья, Сидорин Андрей. «Секреты воздушного шара»

Актуальность темы: каждый маленький ребёнок очень любит, когда родители ему покупают воздушные шарики. Воздушные шарики разнообразные. Они могут разного размера и цвета, одни могут улететь, если его отпустить, а другие упадут на землю. Но не каждый из детей знает, когда появились шары, из чего их делают. Гипотеза: любой воздушный шар сделан из такого материала, которой при попаданий в него каких- либо веществ увеличивается в размерах. Цели: Узнать историю появления воздушного шарика. Задачи исследования: - собрать информацию кто изобрёл первый шар; - из чего делают воздушные шары; - какие бывают воздушные шары; - для чего используют воздушные шары. - при каких условиях шары могут изменять свой размер. 18.1.15

Что такое воздушный шар? Воздушный шарик - это не только игрушка, без которого не обходится ни один праздник, в основном применяется для оформления помещений и праздников. Воздушный шар - летательный аппарат (аэростат), в котором для полёта используется газ легче воздуха. 18.1.15

Когда и где появился первый шар? Первые шары были сделаны из животного мочевого пузыря (свиней) Современные воздушные шары появились на свет в 1824 году. Они были изобретены английским учёным Майклом Фарадеем.

Что такое гелий? Гелий - один из наиболее распространённых элементов во Вселенной, он занимает второе место после водорода. Также гелий является вторым по лёгкости (после водорода) химическим веществом. Гелий широко используется в промышленности и народном хозяйстве: для наполнения воздухоплавающих судов (дирижабли и аэростаты) - при незначительной по сравнению с водородом потере в подъемной силе гелий в силу негорючести абсолютно безопасен; в дыхательных смесях для глубоководного погружения; для наполнения воздушных шариков Водоро́д - самый распространённый элемент во Вселенной. Водород - самый лёгкий газ. Водород широко используется во многих промышленностях: химической (мыла и пластмасс), пищевой (маргарина из жидких растительных масел), авиационной (водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом), в метеорологии (для заполнения шаропилотных оболочек), водород используют в качестве ракетного топлива. 18.1.15

Из чего делают шары сегодня? Шарики изготавливают из латекса и фольги. 18.1.15

Что такое латекс? Латекс – это переработанный сок каучукового дерева Гевеи. Что такое фольга? Фольга́ - металлическая «бумага», тонкий и гибкий металлический лист.

Виды шаров Классические латексные воздушные шары Шары для моделирования Шары для упаковки Миларовые (фольгированные) воздушные шары Ходячие фольгированные фигуры Шары-самодувы Летательные воздушные шары

Летательные воздушные шары. С помощью шаров частично в старину решали проблему бездорожья. Во время войны воздушные шары использовались как воздушные пункты наблюдения и заграждения для защиты городов от налетов бомбардировщиков. В наши дни воздушные шары в основном используются для исследования верхних слоев атмосферы, для получения информации о погоде.

При помощи чего можно надувать шары? 1.Ручного насоса. 2. Электрического насоса. 3. Гелем. 4. Губами. 5.При помощи питьевой соды и столового уксуса (только при помощи взрослых)

18.1.15 Опыт 1. Вывод: любой латексный шарик при надувании меняет свой размер, а когда воздух начинает выходить, шарик уменьшается и становиться таким же, каким был до начала опыта.

18.1.15 Опыт 2. . Вывод: этот эксперимент доказывает, что шары из латекса сделаны из такого материала, которые позволяет менять размер, что они очень прочные.

Опыт 3. 18.1.15 Вывод: этот эксперимент доказывает, что шары из фольги лучше надувать при помощи специальных приборов.

18.1.15 Вывод: перед опытом мы думали что шарик из фольги с водой разорвется, но этот опыт доказывает,эт от эксперименты доказывают, что шары из фольги сделаны из такого материала, которые позволяет менять размер когда во внутрь помещается какое-либо вещество, что они прочные. Опыт 4.

Вывод: При помощи питьевой соды и уксуса можно в домашних условиях надуть воздушный шарик. Опыт 5.

Давайте сравним шарики из латекса и фольги. Шары из фольги Фольгированные воздушные шары более долговечны. Благодаря материалу, из которого сделаны фольгированные шары дольше держат как воздух, так и гелий, поэтому они дольше остаются в надутом состоянии. Шарики из фольги толще, чем латексные, не так боятся шероховатостей Латексные шары Благодаря эластичности латекса, латексные воздушные шары могут принимать самые необычные формы. Латексные шары могут быть наполнены как воздухом, так и гелием. Их можно надувать вручную или с помощью специального компрессора. Шарики, сделанные из латекса, становятся прозрачными, когда их надувают, а из фольги – нет 18.1.15

Выводы: В результате исследования мы выяснили: что воздушные шары делают из разных материалов; что воздушный шар сделан из латекса и из фольги при попаданий в него воды, воздуха, гелия и водорода увеличивается в размерах; что шарики наполненные газом, легче шариков наполненных воздухом, поэтому они поднимаются вверх не зависимо из чего шары сделаны. что в настоящее время воздушные шары используют для украшений залов, в качестве игрушек для детей, а также для проведения полетов и исследований. 18.1.15

Использованная литература Большая энциклопедия школьника. М.:ЗАО «РОСМЭН - ПРЕСС», 2010. Все обо всем. Энциклопедия для детей – М.: «Слово», 2009. Энциклопедия школьника. 4000 очень важных фактов. М: Москва «Махаон», 2006. Интернет ресурсы: материал из Википедии - свободной энциклопедии



 


Читайте:



Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

Афоризмы и цитаты про суицид

Афоризмы и цитаты про суицид

Перед вами - цитаты, афоризмы и остроумные высказывания про суицид . Это достаточно интересная и неординарная подборка самых настоящих «жемчужин...

feed-image RSS