Главная - Стены
Пять бесплатных программ для разработчика металлоконструкций. Пример расчета треугольной фермы Пример расчета метал фермы из швеллеров трапеция

Введите значения размеров в миллиметрах:

X – Длина треугольной стропильной фермы зависит от размера пролета, который необходимо накрыть и способа ее крепления к стенам. Деревянные треугольные фермы применяют для пролетов длиной 6000-12000 мм. При выборе значения X нужно учитывать рекомендации СП 64.13330.2011 «Деревянные конструкции» (актуализированная редакция СНиП II-25-80).

Y – Высота треугольной фермы задается соотношением 1/5-1/6 длины X .

Z – Толщина, W – Ширина бруса для изготовления фермы. Искомое сечение бруса зависит от: нагрузок (постоянные – собственный вес конструкции и кровельного пирога, а также временно действующие – снеговые, ветровые), качества применяемого материала, длины перекрываемого пролета. Подробные рекомендации о выборе сечения бруса для изготовления фермы, наведены в СП 64.13330.2011 «Деревянные конструкции», также следует учитывать СП 20.13330.2011 «Нагрузки и воздействия». Древесина для несущих элементов деревянных конструкций должна удовлетворять требованиям 1, 2 и 3-го сорта по ГОСТ 8486-86 «Пиломатериалы хвойных пород. Технические условия».

S – Количество стоек (внутренних вертикальных балок). Чем больше стоек, тем выше расход материала, вес и несущая способность фермы.

Если необходимы подкосы для фермы (актуально для ферм большой протяженности) и нумерация деталей отметьте соответствующие пункты.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Треугольные деревянные фермы применяют в основном для кровель из материалов требующих значительного уклона. Онлайн калькулятор для расчета деревянной треугольной фермы поможет определить необходимое количество материала, выполнит чертежи фермы с указанием размеров и нумерацией деталей для упрощения процесса сборки. Также с помощью данного калькулятора Вы сможете узнать общую длину и объем пиломатериалов для стропильной фермы.

Фермами называют плоские и пространственные стержневые конструкции с шарнирными соединениями элементов, загружаемые исключительно в узлах. Шарнир допускает вращение, поэтому считается, что стержни под нагрузкой работают только на центральное растяжение-сжатие. Фермы позволяют значительно сэкономить материал при перекрытии больших пролётов.

Рисунок 1

Фермы классифицируются:

  • по очертанию внешнего контура;
  • по виду решётки;
  • по способу опирания;
  • по назначению;
  • по уровню проезда транспорта.

Также выделяют простейшие и сложные фермы . Простейшими называют фермы, образованные последовательным присоединением шарнирного треугольника. Такие конструкции отличаются геометрической неизменяемостью, статической определимостью. Фермы со сложной структурой, как правило, статически неопределимы.

Для успешного расчёта необходимо знать виды связей и уметь определять реакции опор. Эти задачи подробно рассматриваются в курсе теоретической механики. Разницу между нагрузкой и внутренним усилием, а также первичные навыки определения последних дают в курсе сопротивления материалов.

Рассмотрим основные методы расчёта статически определимых плоских ферм.

Способ проекций

На рис. 2 симметричная шарнирно-опёртая раскосная ферма пролётом L = 30 м, состоящая из шести панелей 5 на 5 метров. К верхнему поясу приложены единичные нагрузки P = 10 кН. Определим продольные усилия в стержнях фермы. Собственным весом элементов пренебрегаем.

Рисунок 2

Опорные реакции определяются путём приведения фермы к балке на двух шарнирных опорах. Величина реакций составит R (A) = R (B) = ∑P/2 = 25 кН. Строим балочную эпюру моментов, а на её основе - балочную эпюру поперечных усилий (она понадобится для проверки). За положительное направление принимаем то, что будет закручивать среднюю линию балки по часовой стрелке.

Рисунок 3

Метод вырезания узла

Метод вырезания узла заключается в отсечении отдельно взятого узла конструкции с обязательной заменой разрезаемых стержней внутренними усилиями с последующим составлением уравнений равновесия. Суммы проекций сил на оси координат должны равняться нулю . Прикладываемые усилия изначально предполагаются растягивающими, то есть направленными от узла. Истинное направление внутренних усилий определится в ходе расчёта и обозначится его знаком.

Рационально начинать с узла, в котором сходится не более двух стержней. Составим уравнения равновесия для опоры, А (рис. 4).

F (y) = 0: R (A) + N (A-1) = 0

F (x) = 0: N (A-8) = 0

Очевидно, что N (A-1) = -25кН. Знак «минус» означает сжатие, усилие направлено в узел (мы отразим это на финальной эпюре).

Условие равновесия для узла 1:

F (y) = 0: -N (A-1) - N (1−8) ∙cos45° = 0

F (x) = 0: N (1−2) + N (1−8) ∙sin45° = 0

Из первого выражения получаем N (1−8) = -N (A-1) /cos45° = 25кН/0,707 = 35,4 кН. Значение положительное, раскос испытывает растяжение. N (1−2) = -25 кН, верхний пояс сжимается. По этому принципу можно рассчитать всю конструкцию (рис. 4).

Рисунок 4

Метод сечений

Ферму мысленно разделяют сечением, проходящим как минимум по трём стержням, два из которых параллельны друг другу. Затем рассматривают равновесие одной из частей конструкции . Сечение подбирают таким образом, чтобы сумма проекций сил содержала одну неизвестную величину.

Проведём сечение I-I (рис. 5) и отбросим правую часть. Заменим стержни растягивающими усилиями. Просуммируем силы по осям:

F(y) = 0: R(A) - P + N(9−3)

N(9−3) = P - R(A) = 10 кН - 25 кН = -15 кН

Стойка 9−3 сжимается.

Рисунок 5

Способ проекций удобно применять в расчётах ферм с параллельными поясами, загруженными вертикальной нагрузкой. В этом случае не придётся вычислять углы наклона усилий к ортогональным осям координат. Последовательно вырезая узлы и проводя сечения, мы получим значения усилий во всех частях конструкции. Недостатком способа проекций является то, что ошибочный результат на ранних этапах расчёта повлечёт за собой ошибки во всех дальнейших вычислениях.

Требует составлять уравнение моментов относительно точки пересечения двух неизвестных сил. Как и в методе сечений, три стержня (один из которых не пересекается с остальными) разрезаются и заменяются растягивающими усилиями.

Рассмотрим сечение II-II (рис. 5). Стержни 3−4 и 3−10 пересекаются в узле 3, стержни 3−10 и 9−10 пересекаются в узле 10 (точка K). Составим уравнения моментов. Суммы моментов относительно точек пересечения будут равняться нулю. Положительным принимаем момент, вращающий конструкцию по часовой стрелке.

m(3) = 0: 2d∙R(A) - d∙P - h∙N(9−10) = 0

m(K) = 0: 3d∙R(A) - 2d∙P - d∙P + h∙N(3−4) = 0

Из уравнений выражаем неизвестные:

N(9−10) = (2d∙R(A) - d∙P)/h = (2∙5м∙25кН - 5м∙10кН)/5м = 40 кН (растяжение)

N(3−4) = (-3d∙R(A) + 2d∙P + d∙P)/h = (-3∙5м∙25кН + 2∙5м∙10кН + 5м∙10кН)/5м = -45 кН (сжатие)

Способ моментной точки позволяет определить внутренние усилия независимо друг от друга, поэтому влияние одного ошибочного результата на качество последующих вычислений исключено. Данным способом можно воспользоваться в расчёте некоторых сложных статически определимых ферм (рис. 6).

Рисунок 6

Требуется определить усилие в верхнем поясе 7−9. Известны размеры d и h, нагрузка P. Реакции опор R(A) = R(B) = 4,5P. Проведём сечение I-I и просуммируем моменты относительно точки 10. Усилия от раскосов и нижнего пояса не попадут в уравнение равновесия , так как сходятся в точке 10. Так мы избавляемся от пяти из шести неизвестных:

m(10) = 0: 4d∙R(A) - d∙P∙(4+3+2+1) + h∙O(7−9) = 0

O(7−9) = -8d∙P/h

Нулевым называют стержень, в котором усилие равно нулю. Выделяют ряд частных случаев, в которых гарантированно встречается нулевой стержень.

  • Равновесие ненагруженного узла, состоящего из двух стержней, возможно только в том случае, если оба стержня нулевые.
  • В ненагруженном узле из трёх стержней одиночный (не лежащий на одной прямой с остальными двумя) стержень будет нулевым.

Рисунок 7

  • В трехстержневом узле без нагрузки усилие в одиночном стержне будет равно по модулю и обратно по направлению приложенной нагрузке. При этом усилия в стержнях, лежащих на одной прямой, будут равны друг другу, и определятся расчётом N(3) = -P, N(1) = N(2) .
  • Трехстержневой узел с одиночным стержнем и нагрузкой , приложенной в произвольном направлении. Нагрузка P раскладывается на составляющие P" и P" по правилу треугольника параллельно осям элементов. Тогда N(1) = N(2) + P", N(3) = -P".

Рисунок 8​

  • В ненагруженном узле из четырёх стержней, оси которых направлены по двум прямым, усилия будут попарно равны N(1) = N(2) , N(3) = N(4) .

Пользуясь методом вырезания узлов и зная правила нулевого стержня, можно проводить проверку расчётов, проведённых другими методами.

Расчёт ферм на персональном компьютере

Современные вычислительные комплексы основаны на методе конечного элемента. С их помощью осуществляют расчёты ферм любого очертания и геометрической сложности . Профессиональные программные пакеты Stark ES, SCAD Office, ПК Лира обладают широким функционалом и, к сожалению, высокой стоимостью, а также требуют глубокого понимания теории упругости и строительной механики. Для учебных целей и подойдут бесплатные аналоги, например Полюс 2.1.1.

В Полюсе можно рассчитывать плоские статически определимые и неопределимые стержневые конструкции (балки, фермы, рамы) на силовое воздействие, определять перемещения и температурное воздействие. Перед нами эпюра продольных усилий для фермы, изображённой на рис. 2. Ординаты графика совпадают с полученными вручную результатами.

Рисунок 9

Порядок работы в программе Полюс

  • На панели инструментов (слева) выбираем элемент «опора». Размещаем помещаем элементы на свободное поле кликом левой кнопки мыши. Чтобы указать точные координаты опор, переходим в режим редактирования, нажав на значок курсора на панели инструментов.
  • Двойной клик по опоре. Во всплывающем окне «свойства узла» задаём точные координаты в метрах. Положительное направление осей координат - вправо и вверх соответственно. Если узел не будет использоваться в качестве опоры, установите флажок «не связан с землёй». Здесь же можно задать приходящие в опору нагрузки в виде точечной силы или момента, а также перемещения. Правило знаков такое же. Удобно разместить крайнюю левую опору в начале координат (точка 0, 0).
  • Далее размещаем узлы фермы. Выбираем элемент «свободный узел», кликаем по свободному полю, точные координаты прописываем для каждого узла в отдельности.
  • На панели инструментов выбираем «стержень ». Кликаем на начальном узле, отпускаем кнопку мышки. Затем кликаем на конечном узле. По умолчанию стержень имеет шарниры на двух концах и единичную жёсткость. Переходим в режим редактирования, двойным кликом по стержню открываем всплывающее окно, при необходимости изменяем граничные условия стержня (жёсткая связь, шарнир, подвижный шарнир для опорного конца) и его характеристики.
  • Для загружения ферм используем инструмент «сила», нагрузка прикладывается в узлах. Для сил, прикладываемых не строго вертикально или горизонтально, устанавливаем параметр «под углом», после чего вводим угол наклона к горизонтали. Альтернативно можно сразу ввести значение проекций силы на ортогональные оси.
  • Программа считает результат автоматически. На панели задач (вверху) можно переключать режимы отображения внутренних усилий (M, Q, N), а также опорных реакций (R). Результатом будет эпюра внутренних усилий в заданной конструкции.

В качестве примера рассчитаем сложную раскосную ферму, рассмотренную в методе моментной точки (рис. 6). Примем размеры и нагрузки: d = 3м, h = 6м, P = 100Н. По выведенной ранее формуле значение усилия в верхнем поясе фермы будет равно:

O(7−9) = -8d∙P/h = -8∙3м∙100Н/6м = -400 Н (сжатие)

Эпюра продольных усилий, полученная в Полюсе:

Рисунок 10

Значения совпадают, конструкция смоделирована верно .

Список литературы

  1. Дарков А. В., Шапошников Н. Н. - Строительная механика: учебник для строительных специализированных вузов - М.: Высшая школа, 1986.
  2. Рабинович И. М. - Основы строительной механики стержневых систем - М.: 1960.
8 февраля 2012

Пример. Расчет стропильной фермы. Требуется рассчитать и подобрать сечения элементов стропильной фермы промышленного здания. На ферме посередине пролета расположен фонарь высотой 4 м.

Пролет фермы L = 24 м; расстояние между фермами b = 6 м; панель фермы d = 3 м. Кровля теплая по крупнопанельным железобетонным плитам размером 6 X 1,6 м. Снеговой район III. Материал фермы марки Ст. 3. Коэффициент условий работы для сжатых элементов фермы m = 0,95, для растянутых m = 1.

1) Расчетные нагрузки. Определение расчетных нагрузок приведено в таблице.

Собственный вес стальных конструкций ориентировочно принят в соответствии с таблицей Ориентировочные веса стального каркаса промышленных зданий в кг на 1м 2 здания: фермы — 25 кг/м 2 , фонарь — 10 кг/м 2 , связи — 2 кг/м 2 .

Снеговая нагрузка для III района 100 кг/м 2 ; нагрузка от снега вне фонаря вследствие возможных заносов принята с коэффициентом с = 1,4 (смотрите ).

Суммарная расчетная равномерно распределенная нагрузка:

на фонаре q 1 = 350 + 140 = 490 кг/м 2 ;

на ферме q 2 = 350 + 200 = 550 кг/м 2 .

2) Узловые нагрузки. Вычисление узловых нагрузок приведено в таблице.

Узловые нагрузки Р 1 , Р 2 , Р 3 и Р 4 получены как произведение из равномерно распределенной нагрузки на соответствующие грузовые площади. К нагрузке Р 3 добавлена нагрузка G 1 складывающаяся из веса бортовой плитки 135 кг/м и веса остекленных поверхностей фонаря высотой 3 м, принимаемого равным 35 кг/м 2 .

Местная нагрузка Р м, показанная пунктиром на фигуре, возникает вследствие опирания железобетонных плит шириной 1,5 м в середине панели и вызывает изгиб верхнего пояса. Ее величина уже учтена при вычислении узловых нагрузок Р 1 — Р 4 .

3) Определение усилий. Определение усилий в элементах фермы производим графическим путем, строя диаграмму Кремоны-Максвелла. Найденные величины расчетных усилий записываем в таблице. Верхний пояс подвергается, кроме сжатия, также и местному изгибу.

Примечание. Расчетные напряжения в сжатых элементах фермы определены с учетом коэффициента условий работы (m — 0,95) с целью сопоставления во всех случаях с расчетным сопротивлением.

в первой панели

во второй панели

4) Подбор сечений. Подбор сечений начинаем с самого нагруженного элемента верхнего пояса, имеющего N = — 68,4 т и М2 = 3,3 тм. Намечаем сечение из двух равнобоких уголков 150 X 14, для которого по таблицам сортамента находим геометрические характеристики: F = 2 * 40,4 = 80,8 см 2 , момент сопротивления для наиболее сжатого (верхнего) волокна сечения W см 1 = 203 X 2 = 406 см 3 ; ρ = W/F = 406/80,8 = 5,05см, r х = 4,6 см; r у = 6,6см.

Здесь коэффициент η = 1,3 взят по табл. 4 приложения II. Так как е1 < 4, то проверку сечения производим по , определив предварительно φ вн по табл. 2 приложения II в зависимости от e 1 = 1,4 и = 65 (интерполяцией между четырьмя ближайшими значениями е 1 и λ): φ вн = 0,45.

Проверка напряжения

Проверку напряжения в плоскости, перпендикулярной плоскости действия момента, производим но формуле (28.VIII), для чего предварительно определяем коэффициент с по формуле (29.VIII)

Напряжение

Производим для подобранного сечения проверку элемента верхнего пояса В 4 . Усилие в элементе N = — 72,5 т, изгибающий момент отсутствует. Сечение из двух уголков 150 X 14. Гибкость

Коэффициенты: φ х = 0,83; φ у = 0,68.

Напряжение

Сохраняем принятое сечение пояса по конструктивным соображениям. Первая панель верхнего пояса подвергается только местному изгибу, вследствие чего сечение ее не должно определять выбора профилей уголков пояса, предназначенных в основном для работы на сжатие.

Поэтому, оставляя в первой панели те же два уголка 150 X 14, усилием их вертикальным листом 200 X 12, расположенным между уголками, и проверяем полученное сечение на изгиб.

Определяем положение центра тяжести сечения:

где z 0 и z л — расстояния до центров тяжести уголков и листа от верхней, кромки уголков;

Момент инерции

Момент сопротивления

Наибольшее растягивающее напряжение

Расчетные данные подобранного сечения верхнего пояса вписываем в таблице выше.

Для этого находим необходимые минимальные радиусы инерции (учитывая, что l x = 0,8l):

Равнобокие уголки, наиболее соответствующие полученным радиусам инерции, определяем по табл. 1 приложения III. Можно также использовать, данные табл. 32 для равнобоких уголков:

Этим данным наиболее близко отвечают уголки 75 X 6, имеющие r x = 2,31 см и r y — 3,52 см.

Соответственные значения гибкости будут равны:

Эти уголки и приняты для средних раскосов фермы и занесены в таблице выше. Хотя раскос Д 4 растянут, но, как указывалось выше, в результате возможной несимметричной нагрузки средние раскосы могут испытывать незначительное сжатие, т. е. изменить знак усилия. Поэтому они всегда проверяются на предельную гибкость.

Первый раскос имеет большое усилие, но меньше, чем нижний пояс; однако вследствие того, что он сжат, профиль нижнего пояса из уголков 130 X 90 X 8 для него недостаточен. Приходится вводить еще один, четвертый, профиль — уголок 150 X 100 X 10.

Наконец, для растянутого раскоса Д 2 получаются уголки 65 X 6. Эти же уголки используем для стоек (чтобы не вводить нового профиля). Проверка напряжений, приведенная в таблице выше, показывает, что отсутствуют как перенапряжения в элементах ферм, так и превышения предельных гибкостей.

«Проектирование стальных конструкций»,
К.К.Муханов

При подборе сечений элементов ферм необходимо стремиться к возможно меньшему числу различных номеров и калибров уголковых профилей в целях упрощения прокатки и удешевления транспортировки металла (поскольку прокатка на заводах специализирована по профилям). Обычно удается рационально подобрать сечения элементов стропильных ферм, применяя уголки в пределах 5 — 6 различных калибров сортамента. Подбор сечений начинается со сжатого…

В критическом состоянии потеря устойчивости сжатого стержня возможна в любом направлении. Рассмотрим два главных направления — в плоскости фермы и из плоскости фермы. Возможная деформация верхнего пояса фермы при потере устойчивости в плоскости фермы может произойти так, как показано на фигуре, а, т. е. между узлами фермы. Такая форма деформации соответствует основному случаю продольного изгиба…

Выбор типа уголков для верхнего сжатого пояса стропильных ферм производится с учетом минимального расхода металла, обеспечения равноустойчивости пояса во всех направлениях, а также создания необходимой для удобства транспортировки и монтажа жесткости из плоскости фермы. Так как расчетные длины пояса в плоскости и из плоскости фермы во многих случаях значительно отличаются друг от друга (lу =…

Расчет ферм – это программа, используемая для расчета плоских ферм.

Использование

Благодаря данному программномую обеспечению, Вы сможете определить для конструкций выбранного типа (поддерживаются даже деревянные) фермы нагрузку, а также оценить уровень их прочности и устойчивости. Это поможет выявить все недостатки и ошибки, которые порою "проскакивают" незамеченными на этапе проектировки.

Функционал

Данное решение является усовершенствованной версией программы , о которой мы рассказывали в другом обзоре. Именно из Кристалла и позаимствован режим расчета ферм. Однако, конечно, "ферма" имеет намного более развитый, усовершенствованный, функционал, чем ее предшественник. Например, разработчик задействовал в своем продукте те прототипы, которые являются наиболее часто встречающимися в этой сфере деятельности. Помимо этого, в каталог поперечных стержней сечений добавлено гораздо больше вариантов, чем было в Кристалле. Также окно выбора стали стало более удобным для пользователя.

Работа с программой Расчет ферм происходит в автоматическом режиме. Пользователю не придется самостоятельно генерировать модель фермы, так как расчет будет производиться соответственно готовому шаблону, выбранному из каталога. Построение расчетной схемы усилий и геометрической схемы происходит в AutoCad, что гораздо более удобно для специалиста, нежели обыкновенный отчет в текстовом редакторе. Помимо создания фермы в этой программе, Вы также можете импортировать сюда проекты, созданные в другом программном обеспечении (формата DFX).

Ключевые особенности

  • расчет плоских ферм любых конструкций из выбранного материала;
  • использование готовых прототипов, что исключает необходимость "рисовать" ферму самому;
  • полный расчет формул с детальными описания ми и с указанием ссылок на СНиПы;
  • поддержка компьютеров с любыми версиями Windows;
  • простой и понятный интерфейс (полностью на русском языке);
  • совместимость со всеми установленными стандартами;
  • распространение на бесплатной основе.

Проектирование металлических конструкций - одно из важнейших направлений строительной деятельности. Для определения требуемых параметров профилей используется дорогостоящее лицензионное программное обеспечение, требующее наличия профильного образования и навыков работы с конкретным программным комплексом.

При этом бывают ситуации, когда нужно сделать чертеж «на коленке», подобрать нужный прокат, подсчитать вес балки для определения стоимости и заказа металла. В тех случаях, когда воспользоваться специальными программами нет возможности, удобными помощниками при расчете металлоконструкций могут стать бесплатные онлайн- и десктоп- программы:

  • калькулятор металлопроката Арсенал;
  • онлайн калькулятор Metalcalc;
  • онлайн-программа sopromat.org для расчета балок и ферм;
  • расчет балок в Sopromatguru онлайн;
  • desktop-программа «Ферма».

1. Калькулятор металлопроката Арсенал

Компания Арсенал предоставляет всем желающим возможность сэкономить свое время, воспользовавшись фирменной десктоп-программой для подсчета теоретического веса металлического профиля любых видов, в том числе - из черной и нержавеющей, а также - из цветного металла. На сайте доступна и онлайн-версия программы .

Для того чтобы выполнить расчет профиля нужно ввести информацию о толщине металла, длине отрезка, высоте и ширине. Можно также выбрать марку прокатного профиля из сортамента и задать требуемую длину. В этом случае программа определит его габаритные размеры и вес автоматически.

2. Онлайн-калькулятор металлопроката Metalcalc

Онлайн-калькулятор Metalcalc - удобный ресурс для определения веса и длины металлопроката. При задании основных технические параметров изделия (номер сортамента или габаритные размеры профиля, его длина) программа определит его вес. Расчеты выполняются на основании действующих ГОСТов и отличаются максимальной точностью.

Программа имеет также и функцию обратного пересчета. Если указать массу и типоразмер профиля - сервис высчитает его длину. Ресурс абсолютно бесплатен и удобен в использовании.

3. Бесплатная онлайн-программа sopromat.org для расчета балок и ферм

На сайте Sopromat.org представлена бесплатная онлайн-программа для расчета балок и ферм методом конечных элементов. Расчет может быть выполнен, в том числе, для статически неопределимых рам.

Сервис может быть полезен как студентам для выполнения курсовых работ, так и практикующим инженерам для определения параметров реальных металлоконструкций. Онлайн-ресурс позволяет:

  • определить перемещения в узлах;
  • рассчитать реакции опор;
  • построить эпюры Q, M, N
  • сохранить результаты расчетов и схему нагрузок;
  • экспортировать результаты в формат чертежа DXF.

На сайте всегда находится самая свежая версия программы. Имеется версия Mini для скачивания и работы на мобильных устройствах. Мобильная программа обладает всеми преимуществами полноценной версии.

4. Расчет балок в Sopromatguru

В ближайшее время авторы планируют добавить в программу функцию расчета ферм. На сегодняшний день онлайн-ресурс позволяет бесплатно задать параметры балки, опоры, нагрузки и получить эпюру. За получение доступа к подробному расчету авторы программы просят перечислить символическую оплату. Стоит отметить, что онлайн-сервис красиво оформлен и оборудован понятным интерфейсом.

5. Бесплатная desktop-программа «Ферма»

Небольшая программа Ферма позволяет рассчитать плоскую статически определимую ферму и сохранить результаты. Для начала работы необходимо задать геометрические параметры фермы (размеры стержней, высоты, положения раскосов, нагрузки).

Расчет выполняется по методу вырезания узлов. Определяются усилия в стержнях фермы, а также реакции опор. Максимальное число панелей фермы - 16, число нагрузок - не более 20. Программный комплекс может также применяться и для расчета статически неопределимых ферм.



 


Читайте:



Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

Афоризмы и цитаты про суицид

Афоризмы и цитаты про суицид

Перед вами - цитаты, афоризмы и остроумные высказывания про суицид . Это достаточно интересная и неординарная подборка самых настоящих «жемчужин...

feed-image RSS