Главная - Советы дизайнера
Потенциальное поле сил. Понятие о поле. консервативные силы Что такое силовое поле
Снова рассмотрим замкнутую систему, состоящую из двух точек А и В. В силу первого закона Ньютона, если бы в системе не было точки В и точка А была свободной, то скорость точки А относительно инерциальной системы отсчета не изменялась бы и мы имели бы .

Однако из-за взаимодействия точек А и В производная отлична от нуля. Как уже указывалось выше, механика не отвечает на вопрос о том, почему наличие точки В оказывает воздействие на движение точки А, а исходит из того факта, что такое воздействие имеет место, и отождествляет результат этого воздействия с вектором . Воздействие точки В на движение точки А называют силой и говорят, что точка В действует на точку А с силой, изображаемой вектором

Именно это равенство (используя термин «сила») обычно называют вторым законом Ньютона.

Пусть, далее, та же точка А взаимодействует с несколькими материальными объектами . Каждый из этих объектов, если бы он был один, обусловил бы возникновение силы соответственно. При этом постулируется гак называемый принцип независимости действия сил: сила, обусловленная каким-либо источником, не зависит от наличия сил, обусловленных иными источниками. Центральным при этом является предположение о том, что силы, приложенные к одной и той же точке, могут складываться по обычным правилам сложения векторов и что полученная таким образом сила эквивалентна исходным. Благодаря предположению о независимости действия сил множество воздействий, приложенных к материальной точке, можно заменить одним воздействием, представленным соответственно одной силой, которая получается геометрическим гуммированием векторов всех действующих сил.

Сила - результат взаимодействия материальных объектов. Это знчит, что если из-за наличия точки В, то и, наоборот, из-за наличия точки А. Соотношение между силами и устанавливается третьим постулатом (законом) Ньютона. Согласно этому постулату при взаимодействии между материальными объектами силы и равны по величине, действуют вдоль одной прямой, но направлены к противоположные стороны. Этот закон формулируется иногда кратко так: «любое действие равно и противоположно противодействию».

Утверждение это - новый постулат. Он не возникает как-либо из предыдущих исходных предположений, и, вообще говоря, можно построить механику без этого постулата или с иной его формулировкой.

При рассмотрении системы материальных точек удобно разделить все силы, действующие на точки рассматриваемой системы, на два класса. К первому классу относят силы, которые возникают благодаря взаимодействиям материальных точек, входящих в данную систему. Силы такого рода называются внутренними. Силы, возникающие благодаря воздействию на материальные точки рассматриваемой системы других материальных объектов, не включенных в эту систему, называют внешними.

2. Работа силы.

Скалярное произведение , где - бесконечно малое приращение радиуса-вектора при смещении материальной точки вдоль ее траектории, называется элементарной работой силы и обозначается . Сумму элементарных работ всех сил, действующих на точки системы, называют элементарной работой сил системы и обозначают

Выражая скалярные произведения через проекции сомножителей на оси координат, получаем

(18)

Если проекции сил и приращения координат выражены через один и тот же скалярный параметр (например, через время t или - в случае системы, состоящей из одной точки, - через элементарное перемещение ), то величины в правых частях равенств (17) и (18) могут быть представлены в виде функций от этого параметра, умноженных на его дифференциал, и могут быть проинтегрированы по этому параметру, например по t в пределах от до . Результат интегрирования обозначается и называется полной работой силы и полной работой сил системы за время соответственно.

При подсчете элементарной и полной работы всех сил системы, , должны быть приняты во внимание все силы, как внешние, так и внутренние. Тот факт, что внутренние силы попарно равны и противоположно направлены, оказывается несущественным, так как при подсчете работы играют роль еще и перемещения точек, и поэтому работа внутренних сил, вообще говоря, отлична от нуля.

Рассмотрим частный случай, когда величины в правых частях равенств (17) и (18) могут быть представлены как полные дифференциалы

В этом случае также естественно принять введенные выше обозначения и определения:

Из равенств (21) и (22) следует, что в тех случаях, когда элементарная работа является полным дифференциалом некоторой функции Ф, работа на любом конечном интервале зависит лишь от значений Ф в начале и в конце этого интервала и не зависит от промежуточных значений Ф, т. е. от того, каким образом происходило перемещение.

3. Силовое поле.

Во многих задачах механики часто приходится иметь дело с силами, зависящими от положения рассматриваемых точек (и, быть может, от времени) и не зависящими от их скоростей. Так, например, сила может зависеть от расстояния между взаимодействующими точками. В технических задачах силы, обусловленные пружинами, зависят от деформации пружин, т. е. также от положения в пространстве рассматриваемой точки или тела.

Рассмотрим сначала случай, когда изучается движение одной точки и поэтому рассматривается только одна сила, зависящая от положения точки. В таких случаях вектор силы связывают не с точкой, на которую осуществляется воздействие, а с точками пространства. Предполагается, что с каждой точкой пространства, определяемой в некоторой инерциальной системе отсчета, связан нектор, изображающий ту силу, которая действовала бы на материальную точку, если бы последняя была помещена в эту точку пространства. Таким образом, условно считается, что пространство всюду «заполнено» векторами. Это множество векторов называется силовым полем.

Говорят, что силовое поле стационарно, если рассматриваемые силы не зависят явно от времени. В противном случае силовое поле называется нестационарным.

Поле называется потенциальным, если существует такая скалярная функция координат точки (и, быть может, времени) , что частные производные от этой функции по и равны проекциям силы F на оси х, у и z соответственно:

В связи с тем, что сила F есть функция точки пространства, т. е. координат , и, может быть, времени, ее проекции также являются функциями переменных .

Функция , если она существует, называется силовой функцией. Разумеется, силовая функция существует не для всякого силового поля, и условия ее существования, т. е. условия того, что поле потенциально, еыясняются в курсе математики и определяются равенствами

При исследовании движения N взаимодействующих точек необходимо учитывать наличие N действующих на них сил . В этом случае вводят -мерное пространство координат точек . Задание точки этого пространства определяет расположение всех N материальных точек изучаемой системы. Далее вводят в рассмотрение -мерный вектор с координатами и условно считают, что -мерное пространство всюду плотно заполнено такими векторами. Тогда задание точки этого -мерного пространства определяет не только положение всех материальных точек относительно исходной системы отсчета, но и все силы, действующие на материальные точки системы. Такое -мерное силовое поле называется потенциальным, если существует силовая функция Ф от всех координат такая, что

Если силы могут быть представлены в виде суммы двух слагаемых

так, что слагаемые удовлетворяют соотношениям (24), а слагаемые им не удовлетворяют, то называются потенциальными, непотенциальными силами.

Система материальных точек называется консервативной, если существует силовая функция , не зависящая явно от времени (силовое поле стационарно) и такая, что все силы, действующие на точки, удовлетворяют соотношениям (24).

Элементарную работу сил консервативной системы

удобно представить в ином виде, выразив скалярные произведения через проекции векторов-сомножителей (формула (18)). Учитывая существование силовой функции Ф, в силу (23) получаем

т. е. элементарная работа равна полному дифференциалу силовой функции

Таким образом, при дгижениях консервативной системы элементарная работа выражается полным дифференциалом некоторой функции, и поэтому

Гиперповерхности

называют поверхностями уровня.

В формуле (26) символы и означают значения Ф в моменты начала и конца движения. Поэтому при любом движении системы, началу которого соответствует точка, расположенная на поверхности уровня

а концу - точка на поверхности уровня

работа подсчитываете по формуле (26). Следовательно, при движении консервативней системы работа зависит не от пути, а лишь от того, на каких поверхностях уровня началось и закончилось движение. В частности, работа равна нулю, если движение начинается и заканчивается на одной и той же поверхности уровня.

СИЛОВОЕ ПОЛЕ - часть пространства (ограниченная или неограниченная), в каждой точке к-рой на помещённую туда материальную частицу действует определённая по численной величине и направлению сила, зависящая только от координат х, у, z этой точки. Такое С. п. наз. стационарным; если сила поля зависит и от времени, то С. п. наз. нестационарным; если сила во всех точках С. п. имеет одно и то же значение, т. е. не зависит ни от координат, ни от времени, С. п. наз. однородным.

Стационарное С. п. может быть задано ур-ниями

где F x , F y , F z - проекции силы поля F.

Если существует такая ф-ция U(x, у , z), называемая силовой ф-цией, что элементарная работа сил поля равна полному дифференциалу этой ф-ции, то С. п. наз. потенциальным. В этом случае С. п. задаётся одной ф-цией U(x, у, z ), а сила F может быть определена через эту ф-цию равенствами:

или . Условие существования силовой ф-ции для данного С. п. состоит в том, что

или . При перемещении в потенциальном С. п. из точки M 1 (x 1 , y 1 , z 1 )в точку М 2 (х 2 , у 2 , z 2) работа сил поля определяется равенством и не зависит от вида траектории, по к-рои перемещается точка приложения силы.

Поверхности U(x, у , z) = const, на к-рых ф-ция сохраняет пост. значение, наз. поверхностями уровня. Сила в каждой точке поля направлена по нормали к проходящей через эту точку поверхности уровня; при перемещении вдоль поверхности уровня работа сил поля равна нулю.

Примеры потенциального С. п.: однородное поле тяжести, для к-рого U = -mgz , где т - масса движущейся в поле частицы, g - ускорение силы тяжести (ось z направлена вертикально вверх); ньютоново поле тяготения, для к-рого U = km/r , где r = - расстояние от центра притяжения, k - постоянный для данного поля коэффициент. Вместо силовой ф-ции в качестве характеристики потенциального С. п. можно ввести потенциальную энергию П, связанную с U зависимостью П(х, у, z )= = -U(x, у , z). Изучение движения частицы в потенциальном С. п. (при отсутствии других сил) существенно упрощается, т. к. в этом случае имеет место закон сохранения механич. энергии, позволяющий установить прямую зависимость между скоростью частицы и её положением в С. п. с. м. Тарг . СИЛОВЫЕ ЛИНИИ - семейство кривых, характеризующих пространственное распределение векторного поля сил; направление вектора поля в каждой точке совпадает с касательной к С. л. Т. о., ур-ния С. л. произвольного векторного поля А (х, у , z) записываются в виде:

Плотность С. л. характеризует интенсивность (величину) силового поля. Область пространства, ограниченная С. л., пересекающими к--л. замкнутую кривую, наз. силовой трубкой. С. л. вихревого поля замкнуты. С. л. потенциального поля начинаются на источниках поля и заканчиваются на его стоках (источниках отрицат. знака).

Понятие С. л. введено М. Фарадеем при исследовании магнетизма, а затем получило дальнейшее развитие в работах Дж. К. Максвелла по электромагнетизму. Согласно представлениям Фарадея и Максвелла, в пространстве, пронизываемом С. л. электрич. и магн. полей, существуют механич. напряжения, соответствующие натяжению вдоль С. л. и давлению поперёк них. Математически эта концепция выражена в Максвелла тензоре натяжений эл--магн. поля.

Наряду с использованием понятия С. л. чаще говорят просто о линиях поля: напряжённости электрич. поля Е , индукции магн. поля В и т. п., не делая спец. акцента на отношение этих нолей к силам.

Физическое поле - особая форма материи, связывающая частицы вещества и передающая (с конечной скоростью) воздействие одних тел на другие. Каждому типу взаимодействия в природе соответствует свое поле. Силовым полем называют область пространства, в которой на помещенное туда материальное тело действует сила, зависящая (в общем случае) от координат и от времени. Силовое поле называется стационарным, если действующие в нем силы не зависят от времени. Силовое поле, в любой точке которого сила, действующая на данную материальную точку, имеет одно и то же значение (по модулю и направлению), является однородным.

Можно характеризовать силовое поле силовыми линиями. В этом случае касательные к силовым линиям определяют направление действия силы в этом поле, а густота силовых линий пропорциональна величине силы.

Рис. 1.23.

Центральной называется сила, линяя действия которой во всех положениях проходит через некоторую определенную точку, называемую центром силы (точка О на рис. 1.23).

Поле, в котором действует центральная сила, - центральное силовое поле. Величина силы F(r), действующей на один и тот же материальный объект (материальную точку, тело, электрический заряд и др.) в разных точках такого поля, зависит только от расстояния г до центра сил, т.е.

(- единичный вектор в направлении вектора г ). Все силовые

Рис. 1.24. Схематическое представление на плоскости хОу однородного поля

линии такого поля проходят через одну точку (полюс) О; момент центральной силы в этом случае относительно полюса тождественно равен нулю M 0 (F ) = з 0. К центральным относятся гравитационные и кулоновские поля (и силы соответственно).

На рисунке 1.24 приведен пример однородного силового поля (его плоская проекция): в каждой точке такого поля действующая на одно и то же тело сила одинакова по величине и направлению, т.е.

Рис. 1.25. Схематическое представление на хОу неоднородного поля

На рисунке 1.25 приведен пример неоднородного поля, в котором F (х ,

у, z ) *? const и

и не равны нулю 1 . Густота силовых линий в различных областях такого поля не одинакова - в области справа поле более сильное.

Все силы в механике можно разбить на две группы: консервативные силы (действующие в потенциальных полях) и неконсервативные (или диссипативные). Силы называются консервативными (или потенциальными), если работа этих сил не зависит ни от формы траектории тела, на которое они действуют, ни от длины пути в области их действия, а определяется только начальным и конечным положением точек перемещения в пространстве. Поле консервативных сил называется потенциальным (или консервативным) полем.

Покажем, что работа консервативных сил по замкнутому контуру равна нулю. Для этого разобьем замкнутую траекторию произвольно на два участка а2 и Ь2 (рис. 1.25). Так как силы консервативны, то Л 1а2 = А т. С другой стороны А 1Ь2 = -А ш. Тогда А иш = А 1а2 + А ш = = А а2 - А Ь2 = 0, что и требовалось доказать. Справедливо и обратное

Рис. 1.26.

утверждение: если работа сил по произ-воль- ному замкнутому контуру ф равна нулю, то силы консервативны, а поле потенциально. Это условие записывается в виде контурного интеграла

Рис. 1.27.

что означает: в потенциальном поле циркуляция вектора F по любому замкнутому контуру L равна нулю.

Работа неконсервативных сил в общем случае зависит как от формы траектории, так и длины пути. Примером неконсервативных сил могут служить силы трения и сопротивления.

Покажем, что все центральные силы относятся к категории консервативных сил. Действительно (рис. 1.27), если сила F центральная, то ее можно пред-

1 Представленное на рис. 1.23 центральное силовое поле также является неоднородным полем.

ставить в виде В этом случае элементарная работа силы F

на элементарном перемещении d/ будет или

dA = F(r)dlcos а = F(r) dr (так как rdl = rdl cos a, a d/ cos а = dr). Тогда работа

где /(г) - первообразная функция.

Из полученного выражения видно, что работа Ап центральной силы F зависит только от вида функции F(r) и расстояний г { и г 2 точек 1 и 2 от силового центра О и не зависит от длины пути от 1 к 2, что и отражает консервативный характер центральных сил.

Приведенное доказательство является общим для любых центральных сил и полей, следовательно, охватывает упомянутые выше силы - гравитационные и кулоновские.

И научно-фантастической литературе, а также в литературе жанра фэнтэзи , который обозначает некий невидимый (реже - видимый) барьер, основная функция которого - защита некоторой области или цели от внешних или внутренних проникновений. Эта идея может базироваться на концепции векторного поля . В физике этот термин также имеет несколько специфических значений (см. Силовое поле (физика)).

Силовые поля в литературе

Понятие «силовое поле» довольно часто встречается в художественных произведениях , кинофильмах и компьютерных играх . Согласно множеству художественных произведений, силовые поля имеют следующие свойства и характеристики, а также используются в следующих целях.

  • Атмосферный энергобарьер позволяющий работать в помещениях, открыто соприкасаюющихся с вакуумом (например с космическим). Силовое поле держит атмосферу внутри помещения и не дает ей выйти за пределы этого помещения: в то же время твердые и жидкие объекты могут свободно проходить в обе стороны
  • Барьер, защищающий от различных атак противника, будь то атаки энергетическим (в т. ч. пучковым), кинетическим или торпедным оружием.
  • Для удержания (не дать выйти) цели в пределах ограничиваемого силовым полем пространства.
  • Блокирует телепортацию вражеских (а иногда и дружественных) войск на корабль, военную базу и т. д.
  • Барьер, сдерживающий распространение в воздухе определённых веществ, например, токсичных газов и паров. (Часто это разновидность технологии, применяемой для создания барьера между космосом и внутренним пространством корабля/космической станции.
  • Средство гашения пожара, ограничивающее приток воздуха (и кислорода) в область пожара, - огонь, израсходовав весь доступный кислород (или иной сильный газ-окислитель) в закрытой силовым полем области, полностью потухает.
  • Щит для защиты чего-либо от воздействия природных или техногенных (в том числе оружия) сил. Например в Star Control в некоторых ситуациях силовое поле может быть достаточно большим, чтобы покрыть целую планету.
  • Силовое поле может использоваться для создания временного жилого пространства в месте, которое изначально непригодно для жизни использующих его разумных существ (например, в космосе или под водой).
  • Как мера безопасности, чтобы направить кого-то или что-то в нужном направлении для захвата.
  • Вместо дверей и решеток камер в тюрьмах.
  • В фантастическом сериале Star Trek: The Next Generation секции космического корабля имели внутренние генераторы силового поля, которые позволяли экипажу включать силовые поля для предотвращения прохождения любой материи или энергии сквозь них. Они также использовались в качестве «окон», которые отделяют вакуум космоса от жилой атмосферы, для защиты от разгерметизации вследствие повреждения или местного разрушения основного корпуса корабля.
  • Силовое поле может полностью покрывать поверхность человеческого тела для защиты от внешних воздействий. В частности Star Trek: The Animation Series астронавты Федерации используют энергополевые скафандры вместо механических. А в Звездных вратах фигурируют персональные энергощиты.

Силовые поля в научной интерпретации

Примечания

Ссылки

  • (англ.) Статья «Силовое поле » на Memory Alpha , вики о вселенной серии «Звёздный путь »
  • (англ.) Статья «Наука полей» на веб-сайте Stardestroyer.net
  • (англ.) Электростатические «невидимые стены» - сообщение из промышленного симпозиума по электростатике

Литература

  • Andrews, Dana G. (2004-07-13). "Things to do While Coasting Through Interstellar Space " (PDF) in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit .. AIAA 2004-3706. Проверено 2008-12-13 .
  • Martin, A.R. (1978). “Bombardment by Interstellar Material and Its Effects on the Vehicle, Project Daedalus Final Report”.

силовое поле

часть пространства, в каждой точке которого на помещенную туда частицу действует определенная по величине и направлению сила, зависящая от координат этой точки, а иногда и от времени. В первом случае силовое поле называют стационарным, а во втором - нестационарным.

Силовое поле

часть пространства (ограниченная или неограниченная), в каждой точке которой на помещенную туда материальную частицу действует определённая по величине и направлению сила, зависящая или только от координат x, у, z этой точки, или же от координат x, у, г и времени t. В первом случае С. п. называется стационарным, а во втором ≈ нестационарным. Если сила во всех точках С. п. имеет одно и то же значение, т. е. не зависит ни от координат, ни от времени, то С. п. называется однородным. С. п., в котором работа сил поля, действующих на перемещающуюся в нём материальную частицу, зависит только от начального и конечного положения частицы и не зависит от вида её траектории, называется потенциальным. Эту работу можно выразить через потенциальную энергию частицы П (х, у, z) равенством А = П (x1, y1, z

    ≈ П (x2, y2, z

    Где x1, y1, z1 и x2, y2, z2 ≈ координаты начального и конечного положений частицы соответственно. При движении частицы в потенциальном С. п. под действием только сил поля имеет место закон сохранения механической энергии, позволяющий установить зависимость между скоростью частицы и сё положением в С. п.

    Примеры потенциального С. п.: однородное поле силы тяжести, для которого П = mgz, где т ≈ масса частицы, g ≈ ускорение силы тяжести (ось z направлена вертикально вверх); ньютоново поле тяготения, для которого П = ≈ fm/r, где r ≈ расстояние частицы от центра притяжения, f ≈ постоянный для данного поля коэффициент.

    Технически различают:

    • стационарные силовые поля , величина и направление которых могут зависеть исключительно от точки пространства (координат x, у, z), и
    • нестационарные силовые поля , зависящие также от момента времени t.
    • однородное силовое поле , для которого сила, действующая на пробную частицу, одинакова во всех точках пространства и

    • неоднородное силовое поле , не обладающее таким свойством.

    Наиболее простым для исследования является стационарное однородное силовое поле, но оно же представляет собой и наименее общий случай.

    Силовое поле

    Силовое поле - многозначный термин, употребляемый в следующих значениях:

    • Силовое поле - векторное поле сил в физике;
    • Силовое поле - некий невидимый барьер, основная функция которого - защита некоторой области или цели от внешних или внутренних проникновений.

    Силовое поле (фантастика)

    Силовое поле или силовой щит или защитный щит - широко распространенный термин в фантастической и научно-фантастической литературе, а также в литературе жанра фэнтэзи, который обозначает некий невидимый барьер, основная функция которого - защита некоторой области или цели от внешних или внутренних проникновений. Эта идея может базироваться на концепции векторного поля. В физике этот термин также имеет несколько специфических значений (см. Силовое поле).



 


Читайте:



Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

Афоризмы и цитаты про суицид

Афоризмы и цитаты про суицид

Перед вами - цитаты, афоризмы и остроумные высказывания про суицид . Это достаточно интересная и неординарная подборка самых настоящих «жемчужин...

feed-image RSS