Главная - Спальня
В чем измеряется жесткость тела. Формула жесткости пружины. Другой вариант записи формулы: коэффициент Юнга

Сила упругости — это та сила, которая возникает при деформации тела и которая стремится восстановить прежние форму и размеры тела.

Сила упругости возникает в результате электромагнитного взаимодействия между молекулами и атомами вещества.

Самый простой вариант деформации можно рассмотреть на примере сжатия и растяжения пружины.

На данном рисунке (x > 0) — деформация растяжения; (x < 0) — деформация сжатия. (Fx) — внешняя сила.

В том случае, когда деформация самая незначительная, т.е малая, сила упругости направлена в сторону, которая является противоположной по направлению перемещающихся частиц тела и пропорциональна деформации тела:

Fx = Fупр = - kx

С помощью данного соотношения выражен закон Гука, который был установлен экспериментальным методом. Коэффициент k принято называть жесткостью тела. Жесткость тела измеряется в ньютонах на метр (Н/м) и зависит от размеров и формы тела, а также от того, из каких материалов состоит данное тело.

Закон Гука в физике для определения деформации сжатия или растяжения тела записывают совершенно в другой форме. В данном случае относительной деформацией называется


Роберт Гук

(18.07.1635 - 03.03.1703)

Английский естествоиспытатель, учёный-энциклопедист

отношение ε = x / l . В то же время напряжением называется площадь поперечного сечения тела после относительной деформации:

σ = F / S = -Fупр / S

В данном случае закон Гука формулируют так: напряжению σ пропорциональна относительная деформация ε . В данной формуле коэффициент Е называют модулем Юнга. Данный модуль не зависит от формы тела и его размеров, но в то же время, напрямую зависит от свойств материалов, из которого состоит данное тело. Для различных материалов модуль Юнга колеблется в достаточно широком диапазоне. Например, для резины E ≈ 2·106 Н/м2, а для стали E ≈ 2·1011 Н/м2 (т.е. на пять порядков больше).

Вполне допустимо обобщить закон Гука и в тех случаях, когда совершаются более сложные деформации. Например, рассмотрим деформацию изгиба. Рассмотрим стержень, который лежит на двух опорах и имеет существенный прогиб.

Со стороны опоры (или подвеса) на данное тело действует упругая сила, это сила реакции опоры. Сила реакции опоры при соприкосновении тел будет направлена к поверхности соприкосновения строго перпендикулярно. Такую силу принято называть силой нормального давления.

Рассмотрим второй вариант. Путь тело лежит на неподвижном горизонтальном столе. Тогда реакции опоры уравновешивает силу тяжести и направлена она вертикально вверх. Причем весом тела считают силу, с которой тело воздействует на стол.

ЖЁСТКОСТЬ

ЖЁСТКОСТЬ

Мера податливости тела деформации при заданном типе нагрузки: чем больше Ж., тем меньше . В сопротивлении материалов и теории упругости Ж. характеризуется коэффициентом (или суммарным внутр. усилием) и характерной деформацией упругого тв. тела. В случае растяжения-сжатия стержня Ж. наз. коэфф. ES в соотношении e=P/(ES) между растягивающей (сжимающей) силой Р и относит. удлинением к стержня (5 - площадь поперечного сечения, Е - модуль Юнга, (см. МОДУЛИ УПРУГОСТИ). При деформации кручения круглого стержня Ж. наз. величина GIр, входящая в соотношение q=M/GIp, где G - модуль сдвига, Iр - полярный сечения, М - крутящий момент, q - относит. угол закручивания стержня. При изгибе бруса Ж. EI входит в соотношение c=М/Е1 между изгибающим моментом М (моментом норм. напряжений в поперечном сечении) и кривизной c изогнутой оси бруса (/ - осевой момент инерции поперечного сечения). В теории пластинок и оболочек пользуются понятием цилиндрич. Ж.: D = Eh3 12(1-v2), где h - толщина (оболочки), v - Пуассона коэфф. Ж. определяется также для нек-рых сложных конструкций.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЖЁСТКОСТЬ

Способность тела или конструкции сопротивляться образованию деформаций. Если материал подчиняется Гука закону, то характеристикой Ж. являются модули упругости Е - при растяжении, сжатии, изгибе и G - при сдвиге. ES в соотношении e=F/ES между растягивающей (сжимающей) силой F и относит. удлинением e стержня с площадью поперечного сечения S. При кручении стержня круглого поперечного сечения Ж. характеризуется величиной GI р (где I p - полярный момент инерции сечения) в соотношении q=M/GI p , между крутящим моментом М и относит. углом закручивания стержня q. При изгибе бруса Ж., равная величине EI, входит в соотношение (=М/ЕI между изгибающим моментом М (моментом нормальных напряжений в поперечном сечении) и кривизной изогнутой оси бруса (,(где I - осевой момент инерции поперечного сечения), а при изгибе пластинок и оболочек под Ж. понимают величину, равную Eh 3 /12(l - n 2), где h - толщина пластинки (оболочки), n - коэф. Пуассона. Ж. имеет существ. значение при расчёте конструкций на устойчивость.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :

Антонимы :

Смотреть что такое "ЖЁСТКОСТЬ" в других словарях:

    Жёсткость воды совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»). Содержание 1 Жёсткая и… … Википедия

    Жёсткость: Жёсткость воды Жёсткость в математике Жёсткость способность материалов или тел сопротивляться возникновению деформации. Жёсткость магнитная в электродинамике определяет воздействие магнитного поля на движение заряженной частицы.… … Википедия

    Размерность L2MT 3I 1 Единицы измерения СИ вольт СГСЭ … Википедия

    жёсткость - см. жёсткий; и; ж. Жёсткость мяса. Жёсткость характера. Жёсткость сроков. Жёсткость воды … Словарь многих выражений

    Совокупность свойств воды, обусловленная наличием в ней преимущественно солей кальция и магния. Использование жёсткой воды приводит к осаждению твердого осадка (накипи) на стенках паровых котлов, теплообменников, затрудняет варку пищевых… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Жёсткость (значения). Жёсткость способность конструктивных элементов деформироваться при внешнем воздействии без существенного изменения геометрических размеров. Основной характеристикой… … Википедия

    жёсткость излучения - жёсткость воды — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы жёсткость воды EN radiation hardnesshardnessHh …

    контактная жёсткость - жёсткость контакта — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы жёсткость контакта EN contact rigidity … Справочник технического переводчика

    Совокупность свойств, обусловленных содержанием в воде ионов Са2+ и Mg2+. Суммарная концентрация ионов Ca2+ (кальциевая Ж. в.) и Mg2+ (магниевая Ж. в.) называется общей Ж. в. Различают Ж. в. карбонатную и некарбонатную. Карбонатная Ж. в.… … Большая советская энциклопедия

    - (a. severity of weather; н. Scharfegrad der Wefferverhaltnisse; ф. rudesse du temps; и. rudeza del tiempo) характеристика состояния атмосферы, комплексно учитывающая температурное и ветровое воздействие на человека. Используется при… … Геологическая энциклопедия

    ЖЁСТКОСТЬ, жёсткости, мн. нет, жен. (книжн.). отвлеч. сущ. к жесткий. Жесткость характера. Излишняя жесткость воды делает ее негодной для питья. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова


Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости .

Чаще всего ее обозначают ${\overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($\overline{F}$), которая направлена вертикально вниз (рис.1).

Силу $\overline{F\ }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${\overline{F}}_u$), уравновешивающая силу $\overline{F\ }$. Если деформация является небольшой и упругой, то удлинение пружины ($\Delta l$) прямо пропорционально деформирующей силе:

\[\overline{F}=k\Delta l\left(1\right),\]

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) - это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости - это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

где $G$ - модуль сдвига (величина, зависящая от материала); $d$ - диаметр проволоки; $d_p$ - диаметр витка пружины; $n$ - количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\[\left=\left[\frac{F_{upr\ }}{x}\right]=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

\[\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}+\dots =\sum\limits^N_{\ i=1}{\frac{1}{k_i}\left(3\right),}\]

где $k_i$ - жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $\frac{Н}{м}.\ $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

При упругих деформациях выполняется закон Гука:

Из (1.2) найдем удлинение пружины:

\[\Delta l=\frac{F}{k}\left(1.3\right).\]

Длина растянутой пружины равна:

Вычислим новую длину пружины:

Ответ. 1) $k"=10\ \frac{Н}{м}$; 2) $l"=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $\Delta l_2$?

Решение. Если пружины соединены последовательно, то деформирующая сила ($\overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

Для второй пружины запишем:

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

Из равенства (2.3) получим удлинение первой пружины:

\[\Delta l_1=\frac{k_2\Delta l_2}{k_1}.\]

Ответ. $\Delta l_1=\frac{k_2\Delta l_2}{k_1}$

Лабораторная работа №1.

Исследование зависимости жёсткости тела от его размеров.

Цель работы: пользуясь зависимостью силы упругости от абсолютного удлинения, вычислить жёсткости пружин разной длины.

Оборудование: штатив, линейка, пружина, грузы массой по 100г.

Теория. Под деформацией понимают изменение объема или формы тела под действием внешних сил. При изменении расстояния между частицами вещества (атомами, молекулами, ионами) изменяются силы взаимодействия между ними. При увеличении расстояния растут силы притя жжения, а при уменьшении – силы отталкивания. которые стремятся вернуть тело в исходное состояния. Поэтому силы упругости имеют электромагнитную природу. Сила упругости всегда направлена к положению равновесия и стремится вернуть тело в исходное состояние. Сила упругости прямо пропорциональна абсолютному удлинению тела: .

Закон Гука: Сила упругости, возникающая при деформации тела, прямо пропорциональна его удлинению (сжатию) и направлена противоположно перемещению частиц тела при деформации, , х = Δ l -удлинение тела, k – коэффициент жесткости [ k ] = Н/м. Коэффициент жесткости зависит от формы и размеров тела, а также от материала. Он численно равен силе упругости при удлинении (сжатии) тела на 1 м.

График зависимости проекции силы упругости F x от удлинения тела.

Из гр афика видно, что tgα = к. Именно по этой формуле вы будете определять жёсткость тела в данной лабораторной работе.

Порядок выполнения работы.

1.Закрепить пружину в штативе на половину длины.

2.Измерить линейкой первоначальную длину пружины l 0 .

3.Подвесить груз массой 100г.

4.Измерить линейкой длину деформированной пружины l .

5.Вычислить удлинение пружины x 1 = Δ l = l – l 0 .

6. На покоящийся относительно пружины груз действуют две

компенсирующие друг друга силы: тяжести и упругости

7.Вычислить силу упругости по формуле , g = 9,8 м/ c 2 - ускорение свобдного падения
8. Подвесить груз массой 200г и повторить опыт по пунктам 4-6.

9.Результаты занести в таблицу.

Таблица.

№п/п

Начальная длина , м

Конечная длина,м

Абсолютное удлинение

Сила упругости

Жёсткость ,

tgα =k, Н/м

10. Выбрать систему координат и построить график зависимости проекции силы упругости F упр от удлинения пружины.

11. Измерить транспортиром угол между прямой и осью абсцисс.

12.По таблице найти тангенс угла.

13.Сделать вывод о величине жёсткости к 1 и занести результат в таблицу.

14.Закрепить пружину в штативе на полную длину и повторить опыт по пунктам 4-13.

15.Сравнить значения k 1 и k 2 .

16.Сделать вывод о зависимости жёсткости от параметров пружины.

К онтрольные вопросы .

1. На рисунке приведен график зависимости модуля силы упругости от удлинения пружины. По закону Гука определите жесткость пружины.

Указать физический смысл тангенса угла между прямой и осью абсцисс, площади треугольника под участком ОА графика.

2.Пружину жесткостью 200 H\м разрезали на 2 равные части. Какова жесткость каждой пружины.

3.Указать точки приложения силы упругости пружины, силы тяжести и веса груза.

4.Назовите природу силы упругости пружины, силы тяжести и веса груза.

5. Решите задачу. Для растяжения пружины на 4мм нужно совершить работу 0,02Дж. Какую работу нужно совершить, чтобы растянуть пружину на 4см?

Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.

Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.

Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех - на 3 см (длина пружины будет 8 см).

Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.

Если обозначить удлинение пружины в результате ее растяжения как x или как ∆l (l 1 – l 0 , где l 0 - начальная длина, l 1 - длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:

F упр = kx или F упр = k∆l, (∆l = l 1 – l 0 = x)

В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как F упр = 0,5x, для второй - F упр = x, для третьей - F упр = 2x.

Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (F упр) при равных удлинения (x) разных пружин.

Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.

Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.

Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние - в метрах. Чтобы уровнять по единицам измерения левую и правую части уравнения F упр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).

Соотношение между силой упругости и деформацией упругого тела, описываемое формулой F упр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука .

Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.

Формула F упр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.



 


Читайте:



Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

Афоризмы и цитаты про суицид

Афоризмы и цитаты про суицид

Перед вами - цитаты, афоризмы и остроумные высказывания про суицид . Это достаточно интересная и неординарная подборка самых настоящих «жемчужин...

feed-image RSS