Реклама

Главная - Прихожая
Поперечный изгиб стержня. Решение типовых задач по сопромату Определяем требуемый диаметр поперечного сечения балки

Поперечный изгиб получается, когда сила действует на брус по направлению, поперечному к его длине.

Рассмотрим два варианта поперечного изгиба: первый, балка лежит на двух опорах, причем груз расположен на балке в пределах между опорами и второй, балка прочно заделана одним концом в стену, а груз находится на свободном конце балки.

Прежде всего выясним, какое влияние на изгиб оказывает место приложения силы. Если мы положим доску на две опоры и будем по ней двигаться от опоры к середине, то прогиб доски будет непрерывно возрастать по мере нашего приближения к середине. Из этого опыта можно сделать заключение, что чем ближе к середине будет приложена сила, тем больше будет прогиб балки. То же самое явление мы будем наблюдать при опыте с балкой, заделанной одним концом в стену, при перемещении груза от стены к концу балки.

В зданиях и сооружениях на балку могут действовать одновременно несколько сил, и притом они могут перемещаться, как, например, автомобили на мосту. Определить влияние этих сил на балку не так просто, как это мы делаем при растяжении или сжатии. Зависимость получается не простая, и человеку без высшего технического образования заниматься этим вопросом сложно.

Как уже было сказано, сила может быть приложена в любом месте балки. Такая сила, имеющая одну точку приложения, называется сосредоточенной .

Если сила равномерно распределена по всей длине балки, то такая сила называется равномерно-распределенной .

Например, на балке в одном месте находится мешок с песком весом 100 кг, это будет сосредоточенная нагрузка (сила), а если тот же груз равномерно рассыпать по всей длине балки, то это будет равномерно-распределенная нагрузка. И в том и в другом случае величина силы одинакова 100 кг, но способ распределения различен. В зависимости от этого и напряжение в балке будет различное, а именно, при сосредоточенной по середине балки нагрузке напряжение будет в 2 раза больше, чем при нагрузке, равномерно-распределенной.

Нам уже известно, что, чем больше сосредоточенный груз будет приближаться к опоре, тем меньше будет прогиб балки, и тем меньше напряжение в материале. Следовательно, если балка будет иметь достаточную прочность при расположении какого-либо груза по середине, то она, безусловно, выдержит этот груз, если он будет находиться в каком угодно месте балки.

Далее, очень интересно выяснить, какие получаются напряжения в нагруженной балке, и как они распределены. Произведем такой опыт: возьмем брус и сделаем на нем пропил в верхней стороне, а затем его нагрузим. Мы увидим, что обе стороны пропила сблизятся вплотную друг к другу. Из этого опыта мы заключаем, что в верхней части бруса, под влиянием нагрузки, происходит сжатие.

Если мы теперь сделаем пропил в нижней стороне бруса и опять его нагрузим, то увидим, что края пропила разошлись и пропил в нижней части сделался очень широким. Из этого мы заключаем, что в нижней части бруса, под влиянием нагрузки, происходит растяжение. Итак, следовательно, в верхней части бруса или балки под влиянием нагрузки происходит сжатие, а в нижней - растяжение. Но так как это происходит в одной и той же балке одновременно, то очевидно, что где-то есть место, в котором растяжение переходит в сжатие, и наоборот. Такое место, действительно, имеется в каждой балке. Эту линию, или вернее плоскость раздела сжатия от растяжения, называют нейтральной осью. В деревянной балке прямоугольного сечения она находится приблизительно посредине высоты.

Так как мы теперь знаем распределение усилий в брусе, находящемся под грузом, то нам будет вполне понятно, как иногда выпрямляют сильно погнувшуюся балку. Для этого ее подпирают и в верхней части балки делают пропил с забиванием в него клина с одновременным поддомкрачиванием снизу. Так как в целой балке, находящейся под грузом, сила растяжения в нижней части равна силе сжатия в верхней, то при забивке клиньев, очевидно, сила сжатия в верхней части балки увеличится, и балка искривится в обратную сторону, т. е. выпрямится.

Далее, не трудно убедиться, что при изгибе балки в ней появляются скалывающие усилия. Для этого опыта возьмем два одинаковой длины бруса и положим один брус на другой. В ненагруженном состоянии торцы их будут совпадать, как показано на рис. 4а. Если теперь мы их нагрузим, то произойдет прогиб брусьев, и торцы их будут расположены так, как показано на рис. 4б. Мы видим, что торцы брусьев не совпадают и нижняя кромка торца верхнего бруса выступает за линию верхней кромки торца нижнего бруса. Очевидно, что по плоскости соприкосновения брусьев произошел сдвиг, в результате которого и появилось выдвижение концов одного бруса над другим. Если бы брус был из одного куска дерева, то очевидно, что никаких изменений на концах бруса мы не заметили бы, но несомненно, что в этом брусе в нейтральной плоскости были бы скалывающие усилия, и если бы прочность дерева была недостаточна, то по концам бруса обнаружилось бы расслоение.

Рис. 4. Изгиб составной балки

После этого опыта становится вполне понятным устройство составных балок на шпонках. На рис. 5 показана такая балка, состоящая из трех брусков, между которыми врублены шпонки. Очевидно, что конец одной балки не может сдвинуться относительно другой, так как этому перемещению препятствуют шпонки. Чем прочнее связь между шпонками и балками, тем жестче балка.

Продолжим предыдущий опыт. Если мы через оба бруса проведем на равном расстоянии черты карандашом, как показано на рис. 4а, и затем нагрузим брусья, то увидим, что средняя черта на обоих брусьях останется без изменения, а все остальные сместятся, как показано на рис. 4б. При этом расхождение черточек будет тем больше, чем дальше они отстоят от середины. Из этого опыта мы заключаем, что наибольшая скалывающая сила находится у концов балок. Вот почему в балках на шпонках следует шпонки ставить чаще к концам и реже к середине.


Рис. 5. Составная балка с врубленными шпонками

Итак, все проделанные опыты убеждают нас в том, что в нагруженной балке возникают различные напряжения.

Будем опять учиться на опыте. Все знают, что если положить доску плашмя и нагрузить ее, то она заметно прогнется, а если ту же доску поставить на ребро и нагрузить ее той же нагрузкой, то прогиб почти не будет заметен. Этот опыт убеждает нас в том, что величина изгиба зависит, главным образом, от высоты балки, а не от ширины. Если взять два квадратных бруса и сплотить их шпонками и болтами, так чтобы получилась одна балка высотою в два квадрата, то такая балка сможет выдержать груз в два раза больше, чем обе эти балки, положенные рядом. При трех балках груз может быть в 4,5 раза больше и т. д.

Из этих опытов нам ясно, что гораздо выгоднее увеличивать высоту балки, чем ее ширину, но, конечно, до известного предела, так как при очень высокой и тонкой балке она сможет изогнуться в сторону.

Так как балки вытесываются или выпиливаются из бревен, то является вопрос, какое же отношение должно быть между высотой и шириной балки, чтобы получить балку наибольшей прочности. Строительная механика дает точный ответ на этот вопрос, а именно, в высоте должно быть 7 каких-либо мер, а в ширине таких же точно мер только 5. Практически это делается, следующим образом. На торце круглого бревна (рис.6) проводят, через центр линию и делят ее на три равные части. Затем из этих точек по наугольнику проводят в противоположные стороны линии до края торца. Наконец, эти крайние точки соединяют с концами линии, проведенной через центр торца, и у нас получится прямоугольник, у которого длинная сторона будет иметь 7 мер, а короткая таких же 5. По этим линиям производится опиловка или обтеска бревна и получается самая прочная балка прямоугольного сечения, какую только можно сделать из данного бревна.


Рис. 6. Балка наибольшей прочности, которую можно вырубить из бревна

Интересно отметить, что, круглое бревно менее прочно в отношении изгиба, чем тоже бревно со слегка стесанными горбылями с верхней и нижней стороны.

На основании всего вышеизложенного можно сделать заключение, что точное определение размеров балок зависит от многих обстоятельств: от числа и местоположения грузов, от рода нагрузки, от способа ее распределения (сплошная или сосредоточенная), от формы балки, ее длины и т. д. Учет всех этих обстоятельств довольно сложен и плотнику-практику он недоступен.

При определении размеров балок, необходимо, кроме прочности, иметь в виду также и прогиб балок. Иногда на постройке плотники высказывают недоумение, почему ставится такая толстая балка, можно было бы взять и потоньше. Совершенно верно, и более тонкая балка выдержит тот груз, который на ней будет расположен, но когда впоследствии по полу на тонких балках будут ходить или танцевать, то такой пол будет гнуться, как качели. Для избегания очень неприятной зыбкости пола, балки кладут толще, чем это требуется по условиям прочности. В жилых домах прогиб балок допускается не свыше 1/250 пролета. Если, например, пролет 9 м, то есть 900 см, то наибольший прогиб должен быть не больше 900: 250, что составит З,6 см.

В заключение следует упомянуть об одном практическом правиле для определения высоты балок в жилых зданиях, а именно: высота балки должна быть не менее 1/24 длины балки. Например, если длина балки 8 м (800 см), то высота должна быть 800: 24 = 33 см.

Для практических целей, помимо всего вышеизложенного, следует ознакомиться с прилагаемыми таблицами, которые дадут возможность, без всяких затруднений легко и быстро определять нужный размер балки для случая равномерно-распределенной нагрузки. В этих таблицах указаны допускаемые нагрузки на балки прямоугольного и круглого сечения, для различных размеров балок и для разных пролетов.

Пример1. В помещении с пролетом 8 м имеется нагрузка весом 2,5 т (2500 кг). Нужно подобрать балки для этой нагрузки.В таблице прямоугольных балок рассматриваем столбец с пролетом 8 м. Нагрузку в 2500 кг может выдержать балка сечением 31×22 см или две балки 26×18,5, или три балки 24,5×17,5 см и т.д. Балки нужно распределить с соответствующим шагом учитывая, что крайние балки несут половину нагрузки от балок, расположенных посредине.

Для груза, расположенного сосредоточенно по середине пролета, величина его должна быть в два раза меньше, чем указано в таблице.

Пример 2. Для прямоугольной балки 7 к 5 из 32-сантиметрового бревна при пролете в 6 м можно допустить равномерно-распределенную нагрузку в 2632 кг (см. таблицу). Если груз будет сосредоточен посредине балки, то можно допустить нагрузку лишь вдвое меньшую, а именно 2632: 2 = 1316 кг.Пример 3. Какого размера балка из бревна, отесанного или опиленного на два канта, выдержит сосредоточенную посредине нагрузку в 1,6 тонны (1600 кг), при пролете в 8 м?

В задании дана сосредоточенная сила, мы знаем, что эта балка должна выдерживать в два раза большую равномерно-распределенную нагрузку, то есть 1600×2=3200 кг. Смотрим в таблице для лафета столбец для пролета в 8 м. Ближайшая к 3200 цифра в таблице 3411 каковой цифре соответствует бревно диаметром в 34 см.

Если балка заделана прочно одним концом в стену, то она может выдержать груз, сосредоточенный на ее свободном конце, в 8 раз меньший, чем та же балка, лежащая на двух опорах и несущая равномерно-распределенную нагрузку.

Пример 4. Какого диаметра бревно, отесанное или опиленное на четыре канта, прочно заделанное одним концом в стену и имеющее свободный конец в 3 м, может выдержать сосредоточенный груз в 800 кг, прикрепленный к ее свободному концу?Если бы эта балка лежала, на двух опорах, то она могла бы выдержать груз в 8 раз больший, то есть 800 × 8 = 6400 кг. Смотрим в таблице для обзольного бруса столбец для пролета в 3 м и находим две ближайшие цифры 5644 кг и 6948 кг. Этим цифрам соответствуют бревна в 30 и 32 см. Можно взять бревно в 31 см.

Если на балке, заделанной одним концом в стену, нагрузка распределена равномерно, то такая балка может выдержать нагрузку в 4 раза меньшую, чем та же балка, лежащая на двух опорах.

Пример 5. Какой груз может выдержать балка прямоугольного сечения, заделанная одним концом в стену, со свободным концом длиною в 4 м, нагруженная равномерно-распределенной нагрузкой общим весом в 600 кг?Если бы эта балка лежала на двух опорах, то она могла бы выдержать груз в 4 раза больший, то есть 600×4=2400 кг. Смотрим в таблице для балки 7 к 5 столбец для пролета в 4 м. Ближайшая цифра 2746, каковой цифре соответствует бревно в 28 см, или брус в 23×16 см.

При расчетах балок может встретиться такой вопрос какое давление испытывают опоры (стены или колонны) от лежащей на них балки с грузом?

Если груз распределен равномерно по всей балке или сосредоточен посредине, то обе опоры несут одинаковую нагрузку.

Если груз расположен ближе к одной опоре, то эта опора несет больший груз, чем другая. Чтобы узнать какой именно, - нужно величину груза умножить на расстояние до другой опоры и разделить на пролет.

Пример 6. На балке, длиною в 4 м, расположен груз в 100 кг, в расстоянии 1 м от левой опоры и, следовательно, в расстоянии 3 м от правой. Требуется найти нагрузку на левую опору.Умножаем 100 на 3 и полученное число делим на 4, получим 75. Следовательно, левая опора испытывает давление в 75, а правая оставшуюся часть нагрузки, то есть 100-75=25 кг.

Если на балке находятся несколько грузов, то расчет нужно сделать для каждого груза отдельно, и затем полученные нагрузки на одну опору сложить.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.

Классификация видов изгиба стержня

Изгибом называют такой вид деформации, при котором в поперечных сечениях стержня возникают изгибающие моменты. Стержень, работающий на изгиб, принято называть балкой. Если изгибающие моменты - единственные внутренние силовые факторы в поперечных сечениях, то стержень испытывает чистый изгиб. Если же изгибающие моменты возникают совместно с поперечными силами, то такой изгиб называют поперечным.

На изгиб работают балки, оси, валы и другие детали конструкций.

Введем некоторые понятия. Плоскость, проходящая через одну из главных центральных осей сечения и геометрическую ось стержня, называется главной плоскостью. Плоскость, в которой действуют внешние нагрузки, вызывающие изгиб балки, называется силовой плоскостью. Линия пересечения силовой плоскости с плоскостью поперечного сечения стержня носит название силовой линии. В зависимости от взаимного расположения силовой и главных плоскостей балки различают прямой или косой изгиб. Если силовая плоскость совпадает с одной из главных плоскостей, то стержень испытывает прямой изгиб (рис. 5.1, а ), если же не совпадает - косой (рис. 5.1, б).

Рис. 5.1. Изгиб стержня: а - прямой; б - косой

С геометрической точки зрения изгиб стержня сопровождается изменением кривизны оси стержня. Первоначально прямолинейная ось стержня становится криволинейной при его изгибе. При прямом изгибе изогнутая ось стержня лежит в силовой плоскости, при косом - в плоскости, отличной от силовой.

Наблюдая за изгибом резинового стержня, можно заметить, что часть его продольных волокон растягивается, а другая часть сжимается. Очевидно, между растянутыми и сжатыми волокнами стержня существует слой волокон, не испытывающих ни растяжения, ни сжатия, - так называемый нейтральный слой. Линия пересечения нейтрального слоя стержня с плоскостью его поперечного сечения называется нейтральной линией сечения.

Как правило, действующие на балку нагрузки можно отнести к одному из трех видов: сосредоточенные силы Р, сосредоточенные моменты М распределенные нагрузки интенсивностью ц (рис. 5.2). Часть I балки, расположенную между опорами, называют пролетом, часть II балки, расположенную по одну сторону от опоры, - консолью.

При построении эпюры изгибающих моментов М у строителей при­нято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. - вниз , а отрицательные - вверх от оси балки. Поэтому говорят, что строители строят эпюры на растянутых волокнах. У механиков положительные значения и поперечной силы и изгибающего момента откладываются вверх. Механики строят эпюры на сжатых волокнах.

Главные напряжения при изгибе. Эквивалентные напряжения .

В общем случае прямого изгиба в поперечных сечениях балки возникают нормальные и касательные напряжения . Эти напряжения изменяются как по длине, так и по высоте балки.

Таким образом, в случае изгиба имеет место плоское напряженное состояние.

Рассмотрим схему, где балка нагружена силой Р

Наибольшие нормальные напряжения возникают в крайних, наиболее удаленных от нейтральной линии точках, а касательные напряжения в них отсутствуют. Таким образом, для крайних волокон ненулевыми главными напряжениями являются нормальные напряжения в поперечном сечении.

На уровне нейтральной линии в поперечном сечении балки возникают наибольшие касательные напряжения, а нормальные напряжения равны нулю . значит, в волокнах нейтрального слоя главные напряжения определяются значениями касательных напряжений.

В данной расчетной схеме верхние волокна балки будут растянуты, а нижние – сжаты. Для определения главных напряжений используем известное выражение:

Полный анализ напряженного состояния представим на рисунке.

Анализ напряженного состояния при изгибе

Наибольшее главное напряжение σ 1 находится на верхних крайних волокнах и равно нулю на нижних крайних волокнах. Главное напряжение σ 3 имеет наибольшее по абсолютной величине значение на нижних волокнах.

Траектория главных напряжений зависит от типа нагрузки и способа закрепления балки.


При решении задач достаточно отдельно проверить нормальные и отдельно касательные напряжения. Однако иногда наиболее напряженными оказываются промежуточные волокна, в которых имеются и нормальные, и касательные напряжения. Это происходит в сечениях, где одновременно и изгибающий момент, и поперечная сила достигают больших значений — это может быть в заделке консольной балки, на опоре балки с консолью, в сечениях под сосредоточенной силой или в сечениях с резко меняющейся шириной. К примеру, в двутавровом сечении наиболее опасны места примыкания стенки к полке — там имеются значительные и нормальные, и касательные напряжения.

Материал находится в условиях плоского напряженного состояния и требуется проверка по эквивалентным напряжениям.

Условия прочности балок из пластичных материалов по третьей (теории наибольших касательных напряжений) и четвертой (теория энергии формоизменений) теориям прочности.

Как правило,в прокатных балках эквивалентные напряжения не превышают нормальных напряжений в крайних волокнах и специальной проверки не требуется. Другое дело - составные металлические балки, у которых стенка тоньше , чем у прокатных профилей при той же высоте. Чаще применяются сварные составные балки из стальных листов. Расчет подобных балок на прочность: а) подбор сечения — высоты, толщины, ширины и толщины поясов балки; б) проверка прочности по нормальным и касательным напряжениям; в) проверка прочности по эквивалентным напряжениям.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Рассмотрим сечение стандартного профиля в виде двутавра и определим касательные напряжения , действующие параллельно поперечной силе:

Рассчитаем статические моменты простых фигур:

Эту величину можно вычислить и иначе , используя то обстоятельство, что для двутаврового и корытного сечения в дан статический момент половины сечения. Для этого необходимо вычесть из известной величины статического момента величину статического момента до линии А 1 В 1:

Касательные напряжения в месте примыкания полки к стенке изменяются скачкообразно , так как резко изменяется толщина стенки от t ст до b .

Эпюры касательных напряжений в стенках корытного, полого прямоугольного и других сечений имеют тот же вид, что и в случае двутаврового сечения. В формулу входит статический момент заштрихованной части сечения относительно оси Х, а в знаменателе ширина сечения (нетто) в том слое, где определяется касательное напряжение.

Определим касательные напряжения для круглого сечения.

Так как у контура сечения касательные напряжения должны быть направлены по касательной к контуру, то в точках А и В у концов какой-либо параллельной диаметру хорде АВ, касательные напряжения направлены перпендикулярно радиусам ОА и ОВ. Следовательно, направления касательных напряжений в точках А , В, К сходятся в некоторой точке Н на оси Y.

Статический момент отсеченной части:

То есть касательные напряжения меняются по параболическому закону и будут максимальны на уровне нейтральной линии, когда у 0 =0

Формула для определения касательных напряжений (формула )

Рассмотрим прямоугольное сечение

На расстоянии у 0 от центральной оси проведем сечение 1-1 и определим касательные напряжения. Статический момент площади отсеченной части:

Следует иметь в виду, что принципиально безразлично , брать статический момент площади заштрихованной или остальной части поперечного сечения. Оба статических момента равны и противоположны по знаку , поэтому их сумма, которая представляет статический момент площади всего сечения относительно нейтральной линии, а именно центральной оси х, будет равна нулю.

Момент инерции прямоугольного сечения:

Тогда касательные напряжения по формуле

Переменная у 0 входит в формулу во второй степени, т.е. касательные напряжения в прямоугольном сечении изменяются по закону квадратной параболы.

Касательные напряжения достигнут максимума на уровне нейтральной линии, т.е. когда у 0 =0:

, где А -площадь всего сечения.

Условие прочности по касательным напряжениям имеет вид:

, где S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение,Q -поперечная сила, τ — касательное напряжение, [τ] — допускаемое касательное напряжение.

Данное условие прочности позволяет производить три вида расчета (три типа задач при расчете на прочность):

1. Проверочный расчет или проверка прочности по касательным напряжениям:

2. Подбор ширины сечения (для прямоугольного сечения):

3.Определение допускаемой поперечной силы (для прямоугольного сечения):

Для определения касательных напряжений рассмотрим балку, нагруженную силами.

Задача по определению напряжений всегда статически неопределима и требует привлечения геометрических и физических уравнений. Однако можно принять такие гипотезы о характере распределения напряжений , что задача станет статически определимой.

Двумя бесконечно близкими поперечными сечениями 1-1 и 2-2 выделим элемент dz, изобразим его в крупном масштабе, затем проведем продольное сечение 3-3.

В сечениях 1–1 и 2–2 возникают нормальные σ 1 , σ 2 напряжения , которые определяются по известным формулам:

где М — изгибающий момент в поперечном сечении, dМ — приращение изгибающего момента на длине dz

Поперечная сила в сечениях 1–1 и 2–2 направлена вдоль главной центральной оси Y и, очевидно, представляет сумму вертикальных составляющих внутренних касательных напряжений, распределенных по сечению . В сопротивлении материалов обычно принимается допущение о равномерном их распределении по ширине сечения.

Для определения величины касательных напряжений в какой-либо точке поперечного сечения, расположенного на расстоянии у 0 от нейтральной оси Х, проведем через эту точку плоскость, параллельную нейтральному слою (3-3), и вынесем отсеченный элемент. Будем определять напряжение, действующее по площадке АВСД.

Спроецируем все силы на ось Z

Равнодействующая внутренних продольных сил по правой грани будет равна:

где А 0 – площадь фасадной грани, S x 0 – статический момент отсеченной части относительно оси Х . Аналогично на левой грани:

Обе равнодействующие направлены навстречу друг другу, поскольку элемент находится в сжатой зоне балки. Их разность уравновешивается касательными силами на нижней грани 3-3.

Предположим, что касательные напряжения τ распределены по ширине поперечного сечения балки b равномерно . Такое допущение тем вероятнее, чем меньше ширина по сравнению с высотой сечения. Тогда равнодействующая касательных сил dT равна значению напряжений, умноженному на площадь грани:

Составим теперь уравнение равновесия Σz=0:

или, откуда

Вспомним дифференциальные зависимости , согласно которым Тогда получаем формулу:

Эта формула получила название формулы . Эта формула получена в 1855 г. Здесь S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение, Q -поперечная сила в сечении.

— условие прочности при изгибе, где

- максимальный момент (по модулю) с эпюры изгибающих моментов; - осевой момент сопротивления сечения,геометрическая характеристика; - допускаемое напряжение (σ adm)

- максимальное нормальное напряжение.

Если расчет ведется по методу предельных состояний ,то в расчет вместо допускаемого напряжения вводится расчетное сопротивление материала R.

Типы расчетов на прочность при изгибе

1. Проверочный расчет или проверка прочности по нормальным напряжениям

2. Проектный расчет или подбор сечения

3. Определение допускаемой нагрузки (определение грузоподъемност и или эксплуатационной несущей способности)

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту , а поперечная сила оказывается равной нулю . Этот случай изгиба носит название чистого изгиба . Рассмотрим средний участок балки, подвергающийся чистому изгибу.

В нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков , в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза ) . Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.Изгибающий момент представляет собой результирующий момент внутренних нормальных сил , возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

Сечения, ограничивающие участок dz, параллельны друг другу до деформации , а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол . Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:, где -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину . Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине,тогда:

Сократим на и приведем подобные члены, тогда получим:(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям , т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем при осевом растяжении-сжатии:, тогда с учетом формулы (2) имеем (3), т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь как постоянную величину, тогда имеем. Но выражение - это осевой момент инерции сечения относительно оси х - I х . Его размерность см 4 , м 4

Тогда ,откуда (4) ,где - это кривизна изогнутой оси балки, а - жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения: (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение (6) называют осевым моментом сопротивления сечения . Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: (7)

Условие прочности при изгибе: (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения ,т.к. имеется поперечная сила . Касательные напряжения усложняют картину деформирования , они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений . Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5) . Таким образом,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать Подставим сюда формулу нормальных напряжений (3) и получим Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х , и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие (отсутствие момента внутренних сил относительно силовой линии) даст или с учетом (3) . По тем же соображениям (см. выше) . В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю , значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии , несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

При изгибе стержни подвергаются воздействию поперечной силы или изгибающего момента. Изгиб называется чистым, если действует только изгибающий момент, и поперечным, если действует нагрузка, перпендикулярная оси стержня. Брус (стержень), работающий на изгиб, обычно называют балкой. Балки являются наиболее часто встречающимися элементами сооружений и машин, воспринимающими нагрузки от других элементов конструкций и, передающими их тем частям, которые поддерживают балку (чаще всего опорам).

В строительных сооружениях и машиностроительных конструкциях чаше всего можно встретить следующие случаи крепления балок: консольные - с одним защемленным концом (с жесткой заделкой), двухопорные - с одной шарнирно-неподвижной опорой и с одной шарнирно-подвижной опорой и многоопорные балки. Если опорные реакции могут быть найдены из одних уравнений статики, то балки называют статически определимыми. Если же число неизвестных опорных реакций больше, чем число уравнений статики, то такие балки называют статически неопределимыми. Для определения реакций в таких балках приходится составлять дополнительные уравнения - уравнения перемещений. При плоском поперечном изгибе все внешние нагрузки перпендикулярны к оси балки.

Определение внутренних силовых факторов, действующих в поперечных сечениях балки, следует начинать с определения опорных реакций. После этого используем метод сечений, мысленно рассекаем, балку на две части и рассматриваем равновесие одной части. Взаимодействие частей балки заменяем внутренними факторами: изгибающим моментом и поперечной силой.

Поперечная сила в сечении равна алгебраической сумме проекций всех сил, а изгибающий момент равен алгебраической сумме моментов всех сил, расположенных по одну сторону от сечения. Знаки действующих сил и моментов следует определять в соответствии с принятыми правилами. Необходимо научиться правильно определять равнодействующую силу и изгибающий момент от равномерно распределенной по длине балки нагрузки.



Следует иметь в виду, что при определении напряжений, возникающих при изгибе, принимают следующие допущения: сечения плоские до изгиба остаются плоскими и после изгиба (гипотеза плоских сечений); продольные соседние волокна не давят одно на другое; зависимость между напряжениями и деформациями линейная.

При изучении изгиба следует обратить внимание на неравномерность распределения нормальных напряжений в поперечном сечении балки. Нормальные напряжения изменяются по высоте поперечного сечения пропорционально расстоянию от нейтральной оси. Следует уметь определять напряжения изгиба, которые зависят от величины действующего изгибающего момента М И и момента сопротивления сечения при изгибе W О (осевой момент сопротивления сечения).

Условие прочности при изгибе: σ = М И / W О £ [σ] . Значение W О зависит от размеров, формы и расположения поперечного сечения относительно оси.

Наличие поперечной силы, действующей на балку, связано с возникновением касательных напряжений в поперечных сечениях, а по закону парности касательных напряжений - и в продольных сечениях. Касательные напряжения определяют по формуле Д. И. Журавского.

Поперечная сила сдвигает рассматриваемое сечение относительно смежного. Изгибающий момент, складывающийся из элементарных нормальных усилий, возникающих в поперечном сечении балки, поворачивает сечение относительно смежного, чем и обусловлено искривление оси балки, т. е. ее изгиб.

Когда балка испытывает чистый изгиб, то по всей длине балки или на отдельном ее участке в каждом сечении действует изгибающий момент постоянной величины, а поперечная сила в любом сечении данного участка равна нулю. При этом в поперечных сечениях балки возникают только нормальные напряжения.

Для того чтобы глубже разобраться в физических явлениях изгиба и в методике решения задач при расчете на прочность и жесткость, необходимо хорошо усвоить геометрические характеристики плоских сечений, а именно: статические моменты сечений, моменты инерции сечений простейшей формы и сложных сечений, определение центра тяжести фигур, главные моменты инерции сечений и главные оси инерции, центробежный момент инерции, изменение моментов инерции при повороте осей, теоремы о переносе осей.

При изучении этого раздела следует научиться правильно строить эпюры изгибающих моментов и поперечных сил, определять опасные сечения и действующие в них напряжения. Помимо определения напряжений следует научиться определять перемещения (прогибы балки) при изгибе. Для этого используется дифференциальное уравнение изогнутой оси балки (упругой линии), записанное в общем виде.

Для определения прогибов проводится интегрирование уравнения упругой линии. При этом следует правильно определять постоянные интегрирования С и D исходя из условий опирания балки (граничных условий). Зная величины С и D , можно определить угол поворота и прогиб любого сечения балки. Изучение сложного сопротивления обычно начинают с косого изгиба.

Явление косого изгиба особенно опасно для сечений со значительно отличающимися друг от друга главными моментами инерции; балки с таким сечением хорошо работают на изгиб в плоскости наибольшей жесткости, но даже при небольших углах наклона плоскости внешних сил к плоскости наибольшей жесткости в балках возникают значительные дополнительные напряжения и деформации. Для балки круглого сечения косой изгиб невозможен, так как все центральные оси такого сечения являются главными и нейтральный слой всегда будет перпендикулярен плоскости внешних сил. Косой изгиб невозможен и для балки квадратного сечения.

При определении напряжений в случае внецентренного растяжения или сжатия необходимо знать положение главных центральных осей сечения; именно от этих осей отсчитывают расстояния точки приложения силы и точки, в которой определяют напряжения.

Приложенная эксцентрично сжимающая сила может вызвать в поперечном сечении стержня растягивающие напряжения. В связи с этим внецентренное сжатие является особенно опасным для стержней из хрупких материалов, которые слабо сопротивляются растягивающим усилиям.

В заключение следует изучить случай сложного сопротивления, когда тело испытывает одновременно несколько деформаций: например, изгиб совместно с кручением, растяжение-сжатие совместно с изгибом и т. д. При этом следует иметь в виду, что изгибающие моменты, действующие в различных плоскостях, могут складываться как векторы.



 


Читайте:



Учет расчетов с бюджетом

Учет расчетов с бюджетом

Счет 68 в бухгалтерском учете служит для сбора информации об обязательных платежах в бюджет, отчисляемых как за счет предприятия, так и...

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

feed-image RSS