Реклама

Главная - Сам Смогу сделать ремонт
Тда 7293 мостовая схема усилителя. Универсальный усилитель мощности на tda7293. Информация о двуполярном источнике питания

Ну и наконец были проведены тесты еще некоторых особенностей TDA7293, но уже Китайского (а может и не Китайского... Корче говоря эта тайна покрыта мраком) производства:
Система защиты от короткого замыкания сработала с первого раза - раздался сухой хлопок и микросхема приобрела совершенно иной вид:

https://pandia.ru/text/78/135/images/image005_116.jpg" width="350" height="387 src=">

Маркировка у этих чудесных микросхем была выполнена лазером, однако шрифт надписи был несколько иной, причем пока усилитель работал его работоспособность от нормально маркированной TDA7293 практически не отличалась во всех режимах включения. Кстати сказать, микросхемы эти уже практически вытеснили старые образцы, поэтому некоторые поставщики на "раритет" серьезно увеличили цену. Мы же уже торгуем "новыми" микросхемами и нареканий пока не выявленно, поскольку всех усиленно предупреждаем, что "новые" TDA7293 (впрочем как и TDA7294 - тоже уже "новые") не стоит проверять на живучесть, а в режимах нормальной эксплуатации они себя очень даже себя хорошо чувствуют...

https://pandia.ru/text/78/135/images/image007_96.jpg" alt="Новые TDA7293" width="746" height="430 src=">

В данном FAQ мы постараемся рассмотреть все вопросы связанные с популярной в последнее время микросхемой УНЧ TDA7293/7294. Информация взята с одноименной темы форума сайта Паяльник. Всю информацию собрал воедино и оформил , за что ему огромное спасибо. Параметры микросхемы, схема включения, печатная плата, все это . Datasheet микросхемы TDA7293 и TDA7294 можно .

1) Блок питания
Как ни странно, но у многих проблемы начинаются уже здесь. Две самых распространенных ошибки:
- Однополярное питание
- Ориентирование на напряжение вторичной обмотки трансформатора (действующее значение).

Вот схема блока питания:

Что мы здесь видим?

1.1 Трансформатор - должен иметь ДВЕ ВТОРИЧНЫЕ ОБМОТКИ . Либо одна вторичная обмотка с отводом от средней точки (встречается очень редко). Итак, если у вас трансформатор с двумя вторичными обмотками, то их необходимо соединить как показано на схеме. Т.е. начало одной обмотки с концом другой (начало обмотки обозначается черной точкой, на схеме это показано). Перепутаете, ничего не будет работать. Когда соединили обе обмотки, проверяем напряжение в точках 1 и 2. Если там напряжение, равное сумме напряжений обеих обмоток, то вы соединили все правильно. Точка соединения двух обмоток и будет "общим" (земля, корпус, GND, называйте как хотите). Это первая распространенная ошибка, как мы видим: обмоток должно быть две, а не одна.
Теперь вторая ошибка: В даташите (тех. описание микросхемы) на микросхему TDA7294 указано: для нагрузки 4Ома рекомендуется питание +/-27. Ошибка в том, что люди часто берут трансформатор с двумя обмотками 27В, ЭТОГО ДЕЛАТЬ НЕЛЬЗЯ!!! Когда вы покупаете трансформатор, на нем пишут действующее значение , и вольтметр вам тоже показывает действующее значение. После того, как напряжение выпрямляется, им заряжаются конденсаторы. А заряжаются они уже до амплитудного значения которое в 1.41 (корень из 2ух) раза больше действующего значения. Стало быть, чтобы на микросхеме было напряжение 27В, то обмотки трансформатора должны быть на 20В (27 / 1,41 = 19,14 Т.к. на такое напряжение трансформаторы не делают, то возьмем ближайшее: 20В). Суть думаю ясна.
Теперь о мощности: для того, чтобы TDA выдала свои 70Вт, ей необходим трансформатор мощностью минимум 106Вт (КПД у микросхемы 66%), желательно больше. Например для стерео усилителя на TDA7294 очень хорошо подойдет трансформатор мощностью 250Вт

1.2 Выпрямительный мостик - Тут как правило вопросов не возникает, но все же. Я лично предпочитаю ставить выпрямительные мосты, т.к. не надо возиться с 4мя диодами, так удобнее. Мостик должен обладать следующими характеристиками: обратное напряжение 100В, прямой ток 20А. Ставим такой мостик и не паримся, что в один "прекрасный" день он сгорит. Такого мостика хватает на две микросхемы и емкость конденсаторов в БП 60"000мкФ (когда конденсаторы заряжаются, через мостик проходит очень высокий ток)

1.3 Конденсаторы - Как видно, в схеме БП используется 2 типа конденсаторов: полярные (электролитические) и неполярные (пленочные). Неполярные (С2, С3) необходимы для подавления ВЧ помех. По емкости ставьте что будет: от 0,33мкФ до 4мкФ. Желательно ставить наши К73-17, довольно неплохие конденсаторы. Полярные (С4-С7) необходимы для подавления пульсации напряжения, да и к тому же отдают свою энергию при пиках нагрузки усилителя (когда трансформатор не может обеспечить требуемый ток). По емкости до сих пор люди спорят, сколько все таки нужно. Я на опыте понял, что на одну микросхему, достаточно 10000 мкФ в плечо. Напряжение конденсаторов: выбирайте сами, в зависимости от питания. Если у вас трансформатор на 20В, то выпрямленное напряжение будет 28,2В (20 х 1,41 = 28,2), конденсаторы можно поставить на 35В. С неполярными то же самое. Вроде бы ничего не упустил...
В итоге у нас получился БП содержащий 3 клеммы: "+" , "-" и "общий" С БП закончили, переходим к микросхеме.

2) Микросхемы TDA7294 и TDA7293

2.1.1 Описание выводов микросхемы TDA7294
1 - Сигнальная земля


4 - Тоже сигнальная земля
5 - Вывод не используется, можете его смело отламывать (главное не перепутайте!!!)

7 - "+" питания
8 - "-" питания


11 - Не используется
12 - Не используется
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.1.2 Описание выводов микросхемы TDA7293
1 - Сигнальная земля
2 - Инверсный вход микросхемы (в стандартной схеме сюда подключается ОС)
3 - Неинверсный вход микросхемы, сюда подаем аудиосигнал, через разделительный конденсатор С1
4 - Тоже сигнальная земля
5 - Клиппметр, в принципе абсолютно ненужная функция
6 - Вольтодобавка (Bootstrap)
7 - "+" питания
8 - "-" питания
9 - Вывод St-By. Предназначен для перевода микросхемы в дежурный режим (т.е. грубо говоря усилительная часть микросхемы отключается от питания)
10 - Вывод Mute. Предназначен для ослабления входного сигнала (грубо говоря, отключается вход микросхемы)
11 - Вход оконечного каскада усиления (используется при каскадировании микросхем TDA7293)
12 - Сюда подключается конденсатор ПОС (С5) когда напряжение питания превышает +/-40В
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.2 Разница между микросхемами TDA7293 и TDA7294
Такие вопросы встречаются постоянно, итак, вот основные отличия TDA7293:
- Возможность параллельного включения (фигня полная, нужен мощный усилитель - собирайте на транзисторах и будет вам счастье)
- Повышенная мощность (на пару десятков ватт)
- Повышенное напряжение питания (иначе предыдущий пункт был бы не актуален)
- Еще вроде говорят что она вся сделана на полевых транзисторах (а толку то?)
Вот вроде бы все отличия, от себя лишь добавлю что у всех TDA7293 наблюдается повышенная глючность - слишком часто горят.

Еще один распространенный вопрос: Можно ли заменить TDA7294 на TDA7293?
Ответ: Можно, но:
- При напряжении питания <40В заменять можно спокойно (конденсатор ПОС между 14ой и 6ой лапами как был, так и остается)
- При напряжении питания >40В, только необходимо изменить местоположение конденсатора ПОС. Он должен быть между 12ой и 6ой лапами микросхемы, иначе возможны глюки в виде возбуда и т.д.

Вот как это выглядит в даташите на микросхему TDA7293:

Как видно из схемы, конденсатор подключается либо между 6ой и 14ой лапами (напряжение питания <40В) либо между 6ой и 12ой лапами (напряжение питания >40В)

2.3 Напряжение питания
Есть такие экстремалы, запитывают TDA7294 от 45В, потом удивляются: а че горит? Горит потому, что микросхема работает на пределе. Сейчас тут мне скажут: "У меня +/-50В и все работает, не гони!!!", ответ прост: "Вруби на максимальную громкость и засеки время секундомером"

Если у вас нагрузка 4 Ома, то оптимальное питание будет +/- 27В (обмотки трансформатора на 20В)
Если у вас нагрузка 8 Ом, то оптимальное питание будет +/- 35В (обмотки трансформатора на 25В)
С таким напряжением питания микросхема будет работать долго и без глюков (у меня выдерживала КЗ выхода в течение минуты, и ничего не сгорело, как обстоят дела с этим у товарищей экстремалов я не знаю, они молчат)
И еще: если вы все таки решили сделать напряжение питания больше нормы, то не забывайте: от искажений вы все равно никуда не денетесь Больше 70Вт (напряжение питания +/-27В) с микросхемы выжимать бесполезно, т.к. слушать этот скрежет невозможно!!!

Вот график зависимости искажений (THD) от выходной мощности (Pout):

Как мы видим, при выходной мощности 70Вт искажения у нас в районе 0,3-0,8% - это вполне приемлемо и на слух не заметно. При мощности 85Вт искажения уже 10%, это уже хрип и скрежет, в общем слушать звук при таких искажениях невозможно. Отсюда получается, что увеличивая напряжение питания, вы увеличиваете выходную мощность микросхемы, а толку то? Все равно после 70Вт слушать не возможно!!! Так что примите к сведению, плюсов тут никаких нет.

2.4.1 Схемы включения - оригинальная (обычная)

Вот схемка (взята из даташита):

C1 - Лучше ставить пленочный конденсатор К73-17, емкость от 0,33мкФ и выше (чем больше емкость, тем меньше ослабляется низкая частота т.е. всеми любимые басы).
С2 - Лучше ставить 220мкФ 50В - опять таки, басы станут лучше
С3, С4 - 22мкФ 50В - определяют время включения микросхемы (чем больше емкость, тем дольше длительность включения)
С5 - вот он, конденсатор ПОС (как его подключать я написал в пункте 2.1 (в самом конце). Его тоже лучше взять 220мкФ 50В (отгадайте с 3ех раз...басы будут лучше)
С7, С9 - Пленочные, номинал любой: 0,33мкФ и выше на напряжение 50В и выше
С6, С8 - Можно не ставить, у нас в БП уже стоят конденсаторы

R2, R3 - Определяют коэффициент усиления. По умолчанию он равен 32 (R3 / R2), лучше не менять
R4, R5 - По сути та же функция, что и у C3, С4

На схеме есть непонятные клеммы VM и VSTBY - их необходимо подключить к ПЛЮСУ питания, иначе ничего работать не будет.

2.4.2. Схемы включения - мостовая

Схема тоже взята из даташита:

По сути эта схема представляет из себя 2 простых усилителя, с той лишь разницей, что колонка (нагрузка) включена между выходами усилителя. Есть еще пара нюансов, о них чуть позже. Такая схема может использоваться когда у вас нагрузка 8Ом (Оптимальное питание микросхем +/-25В) или 16Ом (Оптимальное питание +/-33В). Для нагрузки 4Ома делать мостовую схему бессмысленно, микросхемы не выдержат ток - результат думаю известен.
Как я сказал выше, мостовая схема собирается из 2ух обычных усилителей. При этом, вход второго усилителя подключается к земле. Еще прошу обратить внимание на резистор который подключен между 14й "ногой" первой микросхемы (на схеме: вверху) и 2ой "ногой" второй микросхемы (на схеме: внизу). Это резистор обратной связи, если его не подключить, усилитель работать не будет.
Еще здесь изменены цепи Mute (10я "нога") и Stand-By (9я "нога"). Это не принципиально, делайте так, как вам нравится. Главное чтобы на лапах Mute и St-By было напряжение больше 5В, тогда микросхема будет работать.

2.4.3 Схемы включения - умощнение микросхемы
Мой вам совет: не страдайте фигней, нужна большая мощность - делайте на транзисторах
Возможно позже напишу как умощнение делается.

2.5 Пара слов о функциях Mute и Stand-By
- Mute - По своей сути, эта функция микросхемы позволяет отключить вход. Когда на выводе Mute (10я лапа микросхемы) напряжение от 0В до 2,3В производится ослабление входного сигнала на 80дБ. При напряжении на 10й лапе более 3,5В ослабления не происходит
- Stand-By - Перевод усилителя в дежурный режим. Эта функция отключает питание выходных каскадов микросхемы. При напряжении на 9-ом выводе микросхемы более 3ех вольт, выходные каскады работают в своем нормальном режиме.

Реализовать управление этими функциями можно двумя способами:

В чем разница? По сути своей ни в чем, делайте так, как вам удобно. Я лично выбрал первый вариант (раздельное управление)
Выводы обоих схем должны быть подключены либо к "+" питания (в этом случае микросхема включена, звук есть), либо к "общему" (микросхема выключена, звука нет).

3) Печатная плата
Вот печатная плата для TDA7294 (TDA7293 тоже можно ставить, при условии что напряжение питания не превышает 40В) в формате Sprint-Layout: .

Плата нарисована со стороны дорожек, т.е. при печати надо зеркалить (для )
Печатную плату я делал универсальную, на ней можно собрать как простую схему, так и мостовую. Для просмотра необходима программа .
Пробежимся по плате и разберем что к чему относится:

3.1 Основная плата (в самом верху) - содержит 4 простых схемы с возможностью объединения их в мостовые. Т.е. на этой плате можно собрать либо 4 канала, либо 2 мостовых канала, либо 2 простых канала и один мостовой. Универсал одним словом.
Обратите внимание на резистор 22к обведенный красным квадратом, его необходимо впаивать если вы планируете делать мостовую схемы, так же необходимо впаять входной конденсатор как показано на разводке (крестик и стрелочка). Радиатор можно купить в магазине Чип и Дип, продается там такой 10х30см, плата делалась как раз под него.
3.2 Плата Mute/St-By - Так уж получилось что для этих функций я сделал отдельную плату. Все подключать по схеме. Mute (St-By) Switch - это переключатель (тумблер), на разводке показано какие контакты замыкать чтобы микросхема работала.

Сигнальные провода от платы Mute/St-By на основной плате подключать так:

Провода питания (+V и GND) подключать в блок питания.
Конденсаторы можно поставить 22мкФ 50В (не 5 штук в ряд, а одну штуку. Количество конденсаторов зависит от количества микросхем, управляемых этой платой)
3.3 Платы БП. Тут все просто, впаиваем мостик, электролитические конденсаторы, подключаем провода, НЕ ПУТАЕМ ПОЛЯРНОСТЬ!!!

Надеюсь сборка не вызовет затруднений. Печатная плата проверена, все работает. При правильной сборке усилитель запускается сразу.

4) Усилитель не заработал с первого раза
Ну что же, бывает. Отключаем усилитель от сети и начинаем искать ошибку в монтаже, как правило в 80% случаев ошибка в неправильном монтаже. Если ничего не найдено, то снова включаем усилитель в сеть, берем вольтметр и проверяем напряжения:
- Начнем с напряжения питания: на 7ой и 13ой лапе должен быть "+" питания; На 8ой и 15ой лапах должен быть "-" питания. Напряжения должны быть одинаковой величины (По крайне мере разброс должен быть не больше 0,5В).
- На 9ой и 10ой лапах должно быть напряжение больше 5В. Если напряжение меньше, значит вы ошиблись в плате Mute/St-By (перепутали полярность, тумблер не так поставили)
- При замкнутом на землю входе, на выходе усилителя должно быть 0В. Если там напряжение больше 1В, то тут уже что-то с микросхемой (возможно брак или левая микросхема)
Если все пункты в порядке, то микросхема обязана работать. Проверьте уровень громкости источника звука. Я когда только собрал этот усилитель, включаю его в сеть...звука нет...через 2 секунды все заиграло, знаете почему? Момент включения усилителя пришелся на паузу между треками, вот так вот бывает.

Другие советы с форума:

Умощнение. TDA7293/94 вполне заточена для подключения нескольких корпусов в параллель, правда есть один ньюансик - выхода надо соединять через 3...5 сек после подачи напряжения питания, иначе могут потребоваться новые м/с.

(С) Михаил aka ~D"Evil~ Санкт-Петербург, 2006г.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Br1 Диодный мост 1 В блокнот
С1-С3 Конденсатор 0.68 мкФ 3 В блокнот
С4-С7 10000 мкФ 4 В блокнот
Tr1 Трансформатор 1 В блокнот
Схема включения - оригинальная (обычная)
Аудио усилитель

TDA7294

1 В блокнот
С1 Конденсатор 0.47 мкФ 1 В блокнот
С2, С5 Электролитический конденсатор 22 мкФ 2 В блокнот
С3, С4 Электролитический конденсатор 10 мкФ 2 В блокнот
С6, С8 Электролитический конденсатор 100 мкФ 2 В блокнот
С7, С9 Конденсатор 0.1 мкФ 2 В блокнот
R1, R3, R4 Резистор

22 кОм

3 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R5 Резистор

10 кОм

1 В блокнот
VM, VSTBY Выключатель 2 В блокнот
Источник аудиосигнала 1 В блокнот
Динамик 1 В блокнот
Схема включения - мостовая.
Аудио усилитель

TDA7294

2 В блокнот
Выпрямительный диод

1N4148

1 В блокнот
Конденсатор 0.22 мкФ 2 В блокнот
Конденсатор 0.56 мкФ 2 В блокнот
Электролитический конденсатор 22 мкФ 4 В блокнот
Электролитический конденсатор 2200 мкФ 2 В блокнот
Резистор

680 Ом

2

Предлагаемая схема предназначена для «умощнения» интегральных усилителей мощности на микросхемах TDA7293 и TDA7294 с помощью нескольких внешних компонентов. Отличительная особенность предлагаемой схемы – простота и отсутствие наладки.

Многие из собиравших усилители на микросхемах TDA7293 и TDA7294 столкнулись с тем, что реальная микросхема не держит заявленную в Datasheet мощность. Одна из возможных причин – некачественные китайские микросхемы. Впрочем – на высокоомную нагрузку они обычно работают неплохо, из чего можно сделать вывод, что кристалл под нагрузкой просто перегревается, а хваленая тепловая защита (как и защита от короткого замыкания) работает тоже «по-китайски»: не защищает ни от чего. Внимательное изучение микросхемы приводит к тем же выводам – вызывает большое сомнение способность этого корпуса отвести от кристалла более 40-50w. Ну разве что охлаждать его жидким азотом...

Защита от КЗ там тоже специфична – при работе на комплексную нагрузку (реальный сабовый динамик) пиковые токи даже при половинной мощности превышают порог срабатывания защиты, что вызывает противный треск в звуке… При этом (печальный опыт, увы) – спустя пару минут микросхема все равно превращается в облако дыма, не смотря на все усилия внутренней схемы защиты…

А сама идея TDA7293 и TDA7294 весьма привлекательна – малогабаритный модуль мощностью 100-130 Вт с весьма приличным звуком (не хай-энд, но вполне хай-фай…). Это и усилитель для домашнего сабвуфера, и усилитель гибридного гитарного аппарата, да и для озвучивания небольших помещений достаточно 2-3 таких модуля с соответствующими колонками… Жаль только, что оно не работает, как обещает документация производителя…

Мысль использовать TDA7293 в качестве предварительного усилителя с внешним выходным каскадом была совершенно банальна и очевидна, и даже отражена в документации на микросхему. Предлагаемое производителем решение назвать простым можно с некоторой натяжкой, а главное – оно только понижает рассеиваемую микросхемой мощность, но не увеличивает отдаваемый в нагрузку ток…

Потому – было решено сделать «умощнение» по-другому, и, естественно, как можно проще. Отмечу сразу - это решение не в аудиофильском стиле «только лампы и обязательно в классе "А"»… Специально измерение искажений не проводились, но видимых на экране и явно слышимых невооруженным ухом искажений схема не имеет, тем более что изначально схема предназначалось для работы с сабвуфером.

Входная часть - практически типовое включение TDA7293. Слегка изменена схема формирования управляющих напряжений на 9/10 выводах микросхемы для простоты. Обращу внимание на раздельные «земли» входных цепей и электролитов питания и нагрузки! Если усилитель у вас одноканальный с отдельным питанием и сигнал подается прямо на вход TDA7293, тогда земли можно не разделять (как это и сделано на большинстве печатных плат, предлагаемых в комплекте с TDA7293). А вот если от одного источника питается несколько каналов, да еще сигнал поступает от какого-нибудь кроссовера, «земля» питания которого тоже прицеплена к «земле» усилителя мощности, вот тогда и возникают вопросы типа: «Чего ж оно фонит? Я же все заэкранировал!» Дорожку на печатке нужно разрезать, и прямо на разрез можно припаять SMD резистор ом на 100. Этого можно и не делать, но тогда есть шанс забыть при отладке подать «землю сигнальную» и все спалить. Землю сигнальную нужно протянуть отдельным проводом (можно использовать экран экранированного провода) от источника сигнала. Поскольку внешний выходной каскад работает в классе B, для устранения «ступеньки» в выходном сигнале резистор R8 выбран относительно низкоомным (0,75 Ом), и в диапазоне выходного тока до 1 A преимущественно работает высоколинейная TDA7293. Когда выходной ток усилителя увеличивается примерно до 1 A, плавно открывается выходной транзистор и выходной ток TDA7293 ограничивается суммой тока базы выходного транзистора и 1 A через R8. Уменьшать значение R8 далее не следует - линейность это заметно не повысит, а мощность, рассеиваемая TDA7293, возрастет. Конденсатор С9 устраняет ВЧ возбуждение и дополнительно уменьшает переключательные искажения выходного каскада (точнее – он позволяет ВЧ составляющим с выхода TDA7293 поступать непосредственно в нагрузку, что довольно эффективно компенсирует «ступеньку» выходной пары внешних транзисторов). В первом варианте была использована одна пара выходных транзисторов, при этом мощность на резистивном эквиваленте нагрузки 4 ома получилась 200 w синуса при питании +/-55 v на холостом ходу. Под нагрузкой питание садилось примерно до 48 v (питание осуществлялось трансформатором ТС-360 с перемотанной вторичной обмоткой, емкости фильтра – по 15000 мкФ). Поскольку реальная нагрузка носит комплексный характер, для повышения надежности была добавлена вторая пара транзисторов и резисторы R9 и R10 для выравнивания токов между парами (если необходима мощность менее 200 Вт, вполне можно ограничиться одной парой выходных транзисторов. В таком случае резисторы R9 и R10 можно исключить). Цепь обратной связи подключена к эмиттерам VT1,VT2. Это увеличивает выходное сопротивление усилителя на 0,08 ома и, на мой взгляд, дефектом не является. Если же обратную связь подключить к нагрузке, выходной ток TDA7293 не будет ограничиваться на уровне 1 А, а будет продолжать расти, хотя и медленно.

Рекомендую акустику подключать через реле со схемой задержки подключения и защиты от постоянного напряжения на выходе - выходной каскад защиты от КЗ не имеет и в случае любых катаклизмов есть приличный шанс повредить акустику. Кроме того, у меня на свободной контактной группе этого же реле собран ограничитель тока силового трансформатора при включении (в цепь питания трансформатора 220В включен проволочный резистор на 100 Ом мощностью 10 Вт, замыкаемый свободными контактами реле) - крайне полезная штука при мощностях более 100 w. Полезность такого решения – в плавном нарастании напряжения питания усилителя при включении, а главное – в ограничении тока от сети в момент включения. Дальнейшее повышение мощности вполне возможно: допустимое питание для TDA7293 составляет +/-60 v, количество выходных транзисторов может быть, соответственно, увеличено.

Все, что говорилось о TDA7293, в полной мере относится и к TDA7294 – с учетом более низкого предельного напряжения питания и иной схемы подключения конденсатора вольтодобавки. Мой опыт показывает несколько большую надежность TDA7294, но возможно это следствие распространившихся в последнее время низкокачественных TDA7293 китайского производства… Еще одно отличие TDA7294 от TDA7293 состоит в том, что у TDA7294 не работает внутренняя схема детектора перегрузки, а у TDA7293 она вполне работоспособна и позволяет индицировать как перегрузку по току, так и клиппинг по напряжению – достаточно прицепить к 5 выводу микросхемы светодиод с токоограничивающим резистором, что довольно удобно.

Предложенное решение – внешний выходной каскад – не требует настройки, если собрано из исправных компонентов, ибо ток покоя у выходных транзисторов равен 0. Серьезным недостатком предложенной схемы является отсутствие защиты от короткого замыкания в нагрузке – при подключенном внешнем выходном каскаде встроенная схема не работает (справедливости ради следует отметить, что и встроенная схема в рекомендованном включении у меня ни разу не спасла микросхему от выгорания…). Впрочем, если предложенный усилитель встраивается, например, в сабвуфер, ввиду отсутствия внешних соединений с акустикой вероятность короткого замыкания ничтожно мала, и на этот недостаток можно закрыть глаза…

Существует возможность еще уменьшить рассеиваемую TDA7293 мощность – увеличить R8, но при этом неизбежно увеличатся и искажения, вносимые выходным каскадом (полагаю, для использования с сабвуфером – это вполне допустимо, тем более, что на низких частотах ООС микросхемы довольно эффективно их компенсирует).

Конструктивно удобно выполнять монтаж всего узла прямо на радиаторе – микросхема с платой крепится в непосредственной близости от пары выходных транзисторов (через слюдяные прокладки и с помощью теплопроводной пасты, естественно), все элементы, кроме R8 и С9 находятся на плате микросхемы, а
R8 и С9 удобно припаять непосредственно к выводам транзисторов.

Вот так выглядел макет варианта с одной выходной парой транзисторов:

Возможно – подобное решение уже предлагалось ранее – «патентный» поиск я не проводил...

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Аудио усилитель

TDA7293

1 Или TDA7294 В блокнот
VT1, VT3 Биполярный транзистор

2SC5200

2 В блокнот
VT2, VT4 Биполярный транзистор

2SA1943

2 В блокнот
R1 Резистор

33 кОм

1 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R3 Резистор

12 кОм

1 В блокнот
R4, R5 Резистор

33 кОм

2 В блокнот
R6 Резистор

47 кОм

1 В блокнот
R7 Резистор

100 Ом

1 В блокнот
R8 Резистор

Микросхема TDA7293 является логическим продолжением TDA7294, и не смотря на то, что цоколевка почти совпадает, имеет некоторые отличия, выгодно отличающую ее от предшественницы. Прежде всего увеличено напряжение питания и теперь оно может достигать величины ±50В, введены защиты от перегрева кристалла и короткого замыкания в нагрузке, а так же реализована возможность параллельного включения нескольких микросхем, что позволяет в широких пределах изменять выходную мощность. THD при 50Вт не превышает 0,1% в диапазоне 20…15000Гц (типовое значение 0,05%). Напряжение питания ±12…±50В, ток выходного каскада в пике достигает 10А. Все эти данные были взяты из даташника. Однако!!! Бесконечные апгрейды стационарных усилителей мощности выявили ряд некоторых весьма интересных вопросов...

Рисунок 1

На рисунке 1 приведена типовая схема включения TDA7293. На рисунке 2 приведена схема мостового включения 2-х микросхем, что позволяет при заниженном напряжении питания получать мощность в четыре раза большую, чем при типовом, однако следует учесть, что на кристалл микросхемы будет нагрузка в 4 раза большей и в любом случае она не должна превышать 100Вт на один корпус микросхемы TDA7293.


Рисунок 2

На рисунке 3 приведена схема параллельного включения, здесь верхняя микросхема работает в режиме "master", а нижняя в режиме "slave". В этом варианте выходные каскады разгружаются, заметно снижаются нелинейные искажения и возможно увеличение выходной мощности в n раз, где n - количество используемых микросхем. Однако следует учесть, что в момент включения на выходах микросхем могут сформироваться броски напряжения, а поскольку системы защиты еще не пришли в рабочий режим, то возможен выход из строя всей линейки включенных параллельно микросхем. Чтобы избежать этой неприятности настоятельно рекомендуется ввести в схему таймер, соединяющий, при помощи контактов реле, выхода микросхем не ранее чем через 2…3 сек с момента подачи питания на микросхемы. Хотя на эту тему завод производитель упорно умалчивает и многие уже попались на "удочку" неограниченных мощностей. Тем не менее, тестовые проверки одинарных вариантов усилителей на TDA7293 показывают устойчивую работу, но стоило одинарные варианты перевести в режим "slave" и подключить к "master"...

При включении - не обязательно первом - микросхемы просто разрывало до самого теплоотводящего фланца, причем всю запараллеленную линейку. И подобное происходило с TDA7293 не единожды, поэтому можно говорить о закономерности и если у Вас нет лишних денег на повторение наших опытов, то поставте таймерок и реле.
Что же касается параллельного включения, то тут даташник абсолютно прав - да, действительно TDA7293 может работать в этом режиме и при использовании 12-ти микросхем TDA7293, включенных по 6 шт. параллельно и при включении этих линеек в мостовую схему, теоретически можно получить до 600Вт выходной мощности на нагрузке в 4 Ома. Реально опробывалось по 3 микросхемы в плече моста, при питании ±35 В было получено около 260 Вт на нагрузку 4 Ома.


Рисунок 3

Техничекие характеристики TDA7293

Параметр

Значение

Выходная мощность при одинарном включении

Rн - 4 Ома Uип - ±30В
Rн - 8 Ом Uип - ±45В

80Вт (110Вт макс)
110Вт (140Вт макс)

Выходная мощность при параллельном включении

Rн - 4 Ома Uип - ±27В
Rн - 8 Ом Uип - ±40В

110Вт
125Вт

Скорость нарастания выходного напряжения


Диапазон частот при неравномерности 3дБ

С1 не менее 1,5мкФ

Искажения

при мощности 5Вт, нагрузке 8Ом и частоте 1кГц
от 0,1 до 50Вт от 20 до 15000Гц не более

0,005%
0,1%

Напряжение питания


Ток потребления в режиме STBY
Ток покоя оконечного каскада
Пороговое напряжение срабатывания устройств блокировки входного и выходного каскадов

"Включено"
"Выключено"

1,5 В
+3,5 В

Тепловое сопротивление кристалл-корпус, град.

Напряжение вторичной обмотки трансформатора, В

Напряжение после выпрямителя, В

Минимальная емкость сглаживающих конденсаторов на плечо питания, мкФ (мост)

Минимальная мощность трасформатора для Rн 4Ома (мост), ВА

Минимальная мощность трасформатора для Rн 8Ом, ВА (мост)

Выходная мощность одного корпуса на 4Ома (мост), Вт

Выходная мощность одного корпуса на 8Ом (мост), Вт

Выходная мощность 2-х корпусов, включенных параллельно на 4Ома (мост), Вт

Выходная мощность 2-х корпусов, включенных параллельно на 8 Ом (мост), Вт

63 (230)

34 (126)

80 (295)

99 (368)

120 (448)

60 (224)


143 (537)

71 (268)


167 (634)

84 (317)


194 (738)

97 (369)


СИНИМ ТЕМНЫМ обозначны режимы для платы из двух микросхем TDA7293, включенных параллельно в одном плече моста
СИНИМ обозначены режимы для для платы из трех микросхем TDA7293, включенных параллельно в одном плече моста
СИНИМ СВЕТЛЫМ обозначны режимы для платы из четырех микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ ТЕМНЫМ обозначны режимы для платы из пяти микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ обозначны режимы для платы из шести микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ СВЕТЛЫМ обозначны режимы для платы из семи микросхем TDA7293, включенных параллельно в одном плече моста
КОРИЧНЕВЫМ ТЕМНЫМ обозначны режимы для платы из восьми микросхем TDA7293, включенных параллельно в одном плече моста
КОРИЧНЕВЫМ обозначны режимы для платы из девяти микросхем TDA7293, включенных параллельно в одном плече моста
КРАСНЫМ обозначны режимы для платы из десяти микросхем TDA7293, включенных параллельно в одном плече моста
Тут следует сразу оговорится - у микросхемы не очень хороший такой параметр, как тепловое сопротивление кристалл-корпус, поэтому при использовании микросхем в режиме "вроде должны выдержать" лучше не рисковать, а поставить еще один корпус в параллель имеющимся, тем более для него никакой "обвязки" не требуется...

Ну и наконец были проведены тесты еще некоторых особенностей TDA7293, но уже Китайского (а может и не Китайского... Корче говоря эта тайна покрыта мраком) производства:
Система защиты от короткого замыкания сработала с первого раза - раздался сухой хлопок и микросхема приобрела совершенно иной вид:

Те, кто занимается созданием домашнего аудио или самостоятельно собирают усилители наверняка встречали описание микросхем ST TDA7293. Если не встречали, обязательно поищите и прочитайте. С помощью этих довольно простых чипов можно собрать усилитель весьма высокого класса.
Я встраиваю такой усилитель в стенную нишу, оборудую скрытую проводку и встроенную акустику. Это позволяет избежать лишних проводов в комнате, стоящих по углам колонок и установки обязательной полочки или тумбочки под телевизором.
Изначально я но, к сожалению, его дизайн и схемотехника оказались плохими. Все каналы усилителя возбуждались на длинных проводах, а разводка платы была ужасная. Пытаясь хоть как-то исправить эту китайскую поделку, делалось множество доработок. Во время одной из них я перепутал плюс и минус питания, и все микросхемы TDA7293 с хлопками, напоминающими петарды, выгорели.
После этого я изменил подход на модульность и использовав проверенную схему и заказал под нее печатные платы, разведенные самостоятельно, под необходимые мне размеры. Разумеется, вместе с платами заказал и детали, в том числе микросхемы TDA7293.


Понимая, что велик риск нарваться на подделку я поискал отличительные признаки подлинных микросхем от ST.
Оказывается, что для проверки подлинности достаточно измерить сопротивление между металлическим ушком (плюсовой провод) и выводами 5, 10 и 11 (минусовой провод тестера). Для подлинных микросхем сопротивление должно быть около 3 Мом. В противоположной полярности тестера измеряемое сопротивление должно быть бесконечным.

Будьте внимательны не попадайтесь на подделки! Всегда открывайте спор и никогда не отзывайте его взамен на обещание выслать вам чего-то другое взамен. Только так можно обезопасить себя от потери денег. Потерянное время вам не возместит никто. Поэтому надеюсь изложенное здесь вам поможет.

UPD по вопросам в комментариях:
Все 28 (двадцать восемь) заказанных на E-bay и Aliexpress микросхем (то есть 100% от числа заказанных) оказались поддельными и полностью не рабочими. Не звонились по указанной методике, не работали (либо грелись, но не работали) в тестовой плате. Перепроверял всё по 10 раз.

E-bay и Aliexpress вернули деньги по всем открытым спорам. В качестве доказательства публиковал фотографии измерения тестером сопротивления между 5-м или 11-м выводом и металлическим ушком. За самый первый заказ (брал на пробу две штуки) на Ebay деньги я не получил, поскольку не знал как проверить подлинность, и упустил время открытия спора.

Очень забавные ответы бывают у китайских продавцов в спорах. Вот пример «аргументации» продавца в последнем выигранном мной споре на Aliexpress:
Hi!Sir
The goods are in transit!
You can wait for time!
You cancel the dispute!
I can extend the receipt time for you!Add 15 days!
Thank you!
You can cancel the dispute!Thank you very much!

Разумеется отвечать на такое не надо, а уж тем более ругаться. Надо спокойно напомнить суть претензии и спросить есть ли что ответить по существу.

Еще один очень интересный момент: Обращали ли вы внимание, что в описании товаров (в частности микросхем и другой комплектации) есть поле: «Brand name» (название производителя). Если нет, то обратите внимание, что НИКОГДА продавцы не указывают оригинальный бренд. Например, вот вместо ST или ST Microelectronics указан CazenOveyi. Этого по правилам Aliexpress достаточно чтобы обвинить продавца в подделке. Ведь вы получаете микросхему с логотипом ST, а заказывали CazenOveyi:)
И еще, если продавец на фото затирает или размывает логотип производителя - жди подделки. Наглой или хитрой, но жди…

Оригинальных микросхем ST TDA7293 пока на просторах Ebay и Aliexpress не обнаружил (не получил). Возможно они есть, приведу пример: После второго заказа и спора я написал продавцу на E-bay подробный отзыв с фотографиями тестов. Разумеется это ему не понравилось, но он честно признался, что не разбирается в аутентичности микросхем, а просто торгует ими. Обещался прислать мне на замену новые, чтобы я отозвал отзыв. Но обманул, ничего не прислал.
Самое интересное, что после этого лот с TDA7293 по два доллара был снят с продажи, а спустя некоторое время появился такой же лот с TDA7293, но уже по семь долларов. Видимо столько стоят настоящие в их закупке или продавец решил страховаться заградительной ценой.

Чип и Дип действительно выход, но поскольку заказывал много чего из комплектации на Ebay и Aliexpress, то на магазин «под боком» не обращал внимания. Если в двух заказанных партиях, что пока в пути будет подделка, то поеду закупаться в Чип и Дип.
Для справедливости надо отметить, что некоторые позиции у местных продавцов взяты из Китая, но стоят в две цены.

P.S. За качество фотографий извиняюсь, но оборудования для макросъемки нет. Старался как мог: дождался солнышка, разложил микросхемы на белой бумаге (что бы не было проблем с балансом) и долго подбирал угол и выбирал из полученных фото.

P.P.S. Кому интересно, информацию о проверке на подлинность прозвонкой взял . Разумеется 100% гарантии может дать только тестовая плата. В моем случае результаты проверки тестером и на плате совпали полностью.

P.P.P.S Проверенная схема взята . А вот так выглядят платы на которых тестировались микросхемы:


К сожалению ошибок в платах не обнаружилось. Разумеется проверял всё с осциллографом. И даже с тестовым радиатором (чтобы избежать хлопков и дыма). Резистор R6 был выпаян для гарантированного unmute. Дорожка от 12-й ноги TDA7293 перерезана для возможности тестирования TDA7294 (перемычка с обратной стороны платы).

Если что таких плат собрано еще 10:


Ждут своего часа (подлинных TDA7293) :)

По поводу «подделок» или «реплик». Допустим в Китае производятся реплики (то есть полно или неполно-функциональные копии) оригинальных микросхем ST TDA7293. Производство микросхем в гараже не наладишь. Это должна быть большая фабрика с много миллионным оборудованием и большим персоналом. Оборудование для производства микросхем производится большей частью не в Китае. Его (оборудование) поставляют известные фирмы под известные условия контрактов. Разумеется, обязательство не печатать кристаллы с нарушением авторских прав это один из пунктов поставки такого оборудования. Вам же, как частному лицу, не продадут станки для печати денег. А государства их приобретают.
Но предположим, что в Китае беспредел. И китайцы купив (или скопировав) американские или европейские линии производства начали печатать что хотят. И назвали это «реплики». Но раз эти микросхемы печатаются на заводе, зачем им потом стирать названия с корпусов и гравировать новые? Поэтому существование «реплик» возможно, но я в такую историю не очень верю. Не логичная она. Представьте себя на месте владельца фабрики: у вас сервисные контракты на обслуживание на много-много миллионов, а вы рискуя расторжением контрактов и потерей денег будете штамповать (пусть сотнями тысяч) микросхемы по одному доллару. Очень рискованный и опасный бизнес. Деньги печатать проще. Фальшивки тоже можно назвать «репликами». :))

Поэтому все что в пиленных корпусах надо называть своим именем: подделка или фальшивка. В терминологии Алиэкспресс это «контрафакт».

Удачи и внимания!

Планирую купить +23 Добавить в избранное Обзор понравился +143 +222

УСИЛИТЕЛЬ МОЩНОСТИ НА TDA7293.
С самыми интимными подробностями!

http://detalinadom. *****/stats/UMZTDA7293.htm

Микросхема TDA7293 является логическим продолжением TDA7294, и не смотря на то, что цоколевка почти совпадает, имеет некоторые отличия, выгодно отличающую ее от предшественницы. Прежде всего увеличено напряжение питания и теперь оно может достигать величины ±50В, введены защиты от перегрева кристалла и короткого замыкания в нагрузке, а так же реализована возможность параллельного включения нескольких микросхем, что позволяет в широких пределах изменять выходную мощность. THD при 50Вт не превышает 0,1% в диапазоне 20…15000Гц (типовое значение 0,05%). Напряжение питания ±12…±50В, ток выходного каскада в пике достигает 10А. Все эти данные были взяты из даташника. Однако!!! Бесконечные апгрейды стационарных усилителей мощности выявили ряд некоторых весьма интересных вопросов...

https://pandia.ru/text/78/135/images/image002_169.jpg" alt="Мостовая" width="500" height="364 src=">
Рисунок 2

На рисунке 3 приведена схема параллельного включения, здесь верхняя микросхема работает в режиме "master", а нижняя в режиме "slave". В этом варианте выходные каскады разгружаются, заметно снижаются нелинейные искажения и возможно увеличение выходной мощности в n раз, где n - количество используемых микросхем. Однако следует учесть, что в момент включения на выходах микросхем могут сформироваться броски напряжения, а поскольку системы защиты еще не пришли в рабочий режим, то возможен выход из строя всей линейки включенных параллельно микросхем. Чтобы избежать этой неприятности настоятельно рекомендуется ввести в схему таймер, соединяющий, при помощи контактов реле, выхода микросхем не ранее чем через 2…3 сек с момента подачи питания на микросхемы. Хотя на эту тему завод производитель упорно умалчивает и многие уже попались на "удочку" неограниченных мощностей. Тем не менее, тестовые проверки одинарных вариантов усилителей на TDA7293 показывают устойчивую работу, но стоило одинарные варианты перевести в режим "slave" и подключить к "master"...
При включении - не обязательно первом - микросхемы просто разрывало до самого теплоотводящего фланца , причем всю запараллеленную линейку. И подобное происходило с TDA7293 не единожды, поэтому можно говорить о закономерности и если у Вас нет лишних денег на повторение наших опытов, то поставте таймерок и реле.
Что же касается параллельного включения, то тут даташник абсолютно прав - да, действительно TDA7293 может работать в этом режиме и при использовании 12-ти микросхем TDA7293, включенных по 6 шт. параллельно и при включении этих линеек в мостовую схему, теоретически можно получить до 600Вт выходной мощности на нагрузке в 4 Ома. Реально опробывалось по 3 микросхемы в плече моста, при питании ±35 В было получено около 260 Вт на нагрузку 4 Ома.

12" width="110%" style="width:110.26%">

Параметр

Значение

Выходная мощность при одинарном включении

Rн - 4 Ома Uип - ±30В
Rн - 8 Ом Uип - ±45В

80Вт (110Вт макс)
110Вт (140Вт макс)

Выходная мощность при параллельном включении

Rн - 4 Ома Uип - ±27В
Rн - 8 Ом Uип - ±40В

110Вт
125Вт

Скорость нарастания выходного напряжения

Диапазон частот при неравномерности 3дБ

С1 не менее 1,5мкФ

Искажения

при мощности 5Вт, нагрузке 8Ом и частоте 1кГц
от 0,1 до 50Вт от 01.01.010Гц не более

Напряжение питания

Ток потребления в режиме STBY

Ток покоя оконечного каскада

Пороговое напряжение срабатывания устройств блокировки входного и выходного каскадов

"Включено"
"Выключено"

1,5 В
+3,5 В

Тепловое сопротивление кристалл-корпус, град.

Напряжение вторичной обмотки трансформатора, В

Напряжение после выпрямителя, В

Минимальная емкость сглаживающих конденсаторов на плечо питания, мкФ (мост)

Минимальная мощность трасформатора для Rн 4Ома (мост), ВА

Минимальная мощность трасформатора для Rн 8Ом, ВА (мост)

Выходная мощность одного корпуса на 4Ома (мост), Вт

Выходная мощность одного корпуса на 8Ом (мост), Вт

Выходная мощность 2-х корпусов, включенных параллельно на 4Ома (мост), Вт

Выходная мощность 2-х корпусов, включенных параллельно на 8 Ом (мост), Вт

ОРАНЖЕВЫМ обозначены режимы близкие к перегрузке, поэтому использовать их настоятельно не рекомендуем, перейдите на вариант параллельного включения
СИНИМ ТЕМНЫМ обозначны режимы для платы из двух микросхем TDA7293, включенных параллельно в одном плече моста
СИНИМ обозначены режимы для для платы из трех микросхем TDA7293, включенных параллельно в одном плече моста
СИНИМ СВЕТЛЫМ обозначны режимы для платы из четырех микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ ТЕМНЫМ обозначны режимы для платы из пяти микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ обозначны режимы для платы из шести микросхем TDA7293, включенных параллельно в одном плече моста
ЗЕЛЕНЫМ СВЕТЛЫМ обозначны режимы для платы из семи микросхем TDA7293, включенных параллельно в одном плече моста
КОРИЧНЕВЫМ ТЕМНЫМ обозначны режимы для платы из восьми микросхем TDA7293, включенных параллельно в одном плече моста
КОРИЧНЕВЫМ обозначны режимы для платы из девяти микросхем TDA7293, включенных параллельно в одном плече моста
КРАСНЫМ обозначны режимы для платы из десяти микросхем TDA7293, включенных параллельно в одном плече моста
Тут следует сразу оговорится - у микросхемы не очень хороший такой параметр, как тепловое сопротивление кристалл-корпус, поэтому при использовании микросхем в режиме "вроде должны выдержать" лучше не рисковать, а поставить еще один корпус в параллель имеющимся, тем более для него никакой "обвязки" не требуется...

Немного статистики по "новым" TDA7293, проверялось по 50 штук каждого вида.

Потребление на холостом ходу более 3А с характерным нагревом корпуса

Потребление на холостом ходу более 1А с характерным нагревом корпуса

Отказалось издавать звук

Отказалось издавать звук

Результаты проверки на КЗ на фото выше

Результаты проверки на КЗ - пока не проверяли

К дополнительным приметам можно отнести несколько зеленоватый оттенок корпуса, оранжевые разводы на фланце и отсутствие значка рядом с логотипом фирмы.

К дополнительным приметам можно отнести черноватый оттенок корпуса, лазерная маркировка и значка логотипа и самой микросхемы более объемная, под углом к свету просматривается намного четчке.

Что касается маркировки TDA7293 приведенной ниже, то эти микросхемы даже не стоит и покупать, поскольку кроме как для изготовления брелков они ни на что не пригоды, поскольку даже ток не потребляют...

https://pandia.ru/text/78/135/images/image009_80.jpg" alt="Схема" width="400" height="338 src=">

Не проставленные номиналы как в типовой схеме включения.

TDA7293.pdf TDA7294.pdf TDA7295.pdf Усилитель мощности на TDA7293 на микросхеме простой высококачественный

На последок остается добавить, что TDA7293 можно использовать с плавающим питанием, принципиальная схема приведена на рисунке 4. Этот вариант позволяет развить до 200Вт на 4 Ома при типовых искажениях.

https://pandia.ru/text/78/135/images/image011_63.jpg" alt="Габаритные размеры TDA7293" width="587" height="296 src=">
Рисунок 5

Ну и наконец как можно закрепить микросхему TDA7293 на радиаторе. Можно использовать изолирующие шайбы, которые не дадут коротнуть теплоотводящий фланец микросхемы с радиатором - ведь на нем "МИНУС" напряжения питания, а можно использовать "хвостики" от наших транзисторов типа КТ818. "Хвостик" необходимо вложить между полосками стеклотекстолита, с которых удалена фольга, предварительно смазав их хороша размешанным эпоксидным клеем. Если нет желания долго ждать полимеризацию клея, то можно использовать кусочек ваты, пропитанной ЛЮБЫМ "СУПЕР КЛЕЕМ" - через 15 мин. она уже полностью затвердеет.
Как только клей затвердеет, обточить напильником края, просверлить отвертия в полоске-кронштейне и в радиаторе, причем в радиаторе лучше нарезать резьбу М3. Слюду, с обоих сторон промазать термопастой! Ну а как будет это выглядеть видно на рисунке 6.

https://pandia.ru/text/78/135/images/image013_103.gif" width="555" height="280">

ВНИМАНИЕ!!! Если на выходе источника сигнала присутствует постоянное напряжение, на входе нужно поставить конденсатор!

При прослушивании можно попробовать включить режим Mute.

Двухполосный усилитель с фильтрами второго порядка (12дБ/Октава). Если использовать типовую схему включения, то двухполосный усилитель можно сделать не используя дополнительных элементов.

Таблица выбора элементов разделительных фильтров



 


Читайте:



Учет расчетов с бюджетом

Учет расчетов с бюджетом

Счет 68 в бухгалтерском учете служит для сбора информации об обязательных платежах в бюджет, отчисляемых как за счет предприятия, так и...

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Сырники из творога на сковороде — классические рецепты пышных сырников Сырников из 500 г творога

Ингредиенты: (4 порции) 500 гр. творога 1/2 стакана муки 1 яйцо 3 ст. л. сахара 50 гр. изюма (по желанию) щепотка соли пищевая сода на...

Салат "черный жемчуг" с черносливом Салат черная жемчужина с черносливом

Салат

Доброго времени суток всем тем, кто стремится к разнообразию каждодневного рациона. Если вам надоели однообразные блюда, и вы хотите порадовать...

Лечо с томатной пастой рецепты

Лечо с томатной пастой рецепты

Очень вкусное лечо с томатной пастой, как болгарское лечо, заготовка на зиму. Мы в семье так перерабатываем (и съедаем!) 1 мешок перца. И кого бы я...

feed-image RSS